2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

控制增益为未知函数的不确定系统预设性能反演控制

耿宝亮 胡云安 李静 赵永涛

耿宝亮, 胡云安, 李静, 赵永涛. 控制增益为未知函数的不确定系统预设性能反演控制. 自动化学报, 2014, 40(11): 2521-2529. doi: 10.3724/SP.J.1004.2014.02521
引用本文: 耿宝亮, 胡云安, 李静, 赵永涛. 控制增益为未知函数的不确定系统预设性能反演控制. 自动化学报, 2014, 40(11): 2521-2529. doi: 10.3724/SP.J.1004.2014.02521
GENG Bao-Liang, HU Yun-An, LI Jing, ZHAO Yong-Tao. Prescribed Performance Backstepping Control of Uncertain Systems with Unknown Control Gains. ACTA AUTOMATICA SINICA, 2014, 40(11): 2521-2529. doi: 10.3724/SP.J.1004.2014.02521
Citation: GENG Bao-Liang, HU Yun-An, LI Jing, ZHAO Yong-Tao. Prescribed Performance Backstepping Control of Uncertain Systems with Unknown Control Gains. ACTA AUTOMATICA SINICA, 2014, 40(11): 2521-2529. doi: 10.3724/SP.J.1004.2014.02521

控制增益为未知函数的不确定系统预设性能反演控制

doi: 10.3724/SP.J.1004.2014.02521
基金项目: 

国家自然科学基金(61174031)资助

详细信息
    作者简介:

    耿宝亮 海军航空工程学院控制工程系博士研究生. 2006 年获得海军航空工程学院控制工程系硕士学位. 主要研究方向为自适应控制, 非线性控制.E-mail: gbl404173223@163.com

    通讯作者:

    胡云安, 海军航空工程学院控制工程系教授. 2004 年获得哈尔滨工业大学电器工程与自动化学院博士学位. 主要研究方向为飞行器导航和控制系统设计, 非线性控制. 本文通信作者.E-mail: hya507@sina.com

Prescribed Performance Backstepping Control of Uncertain Systems with Unknown Control Gains

Funds: 

Supported by National Natural Science Foundation of China (61174031)

  • 摘要: 对一类控制增益为未知函数的不确定严格反馈系统的预设性能反演控制进行研究.首先,提出一种新的变参数约束方案,放宽了对初始跟踪误差已知的限制,并通过误差转化将不等 式约束的受限系统转化为非受限系统.随后,通过引入积分型Lyapunov函数,避免了因控制增益未知而引起的系统奇异问题.最后,综合应用自适应技术、径向基函数(Radial basis function,RBF)神经网络和反演控制技术完成了控制器的设计,系统中的未知函数利用RBF神经网络直接进行逼近.所设计的控制器能够满足预设性能的要求,且保证闭环系统所有的状态量有界.仿真研究证明了控制器设计方法的有效性.
  • [1] Krstic M, Kanellakopoulos I, Kokotovic P. Nonlinear and Adaptive Control Design. New York: Wiley, 1995.
    [2] Seto D, Annaswamy A M, Baillieul J. Adaptive control of nonlinear systems with a triangular structure. IEEE Transactions on Automatic Control, 1994, 39(7): 1411-1428
    [3] Spooner J T, Maggiore M, Ordóñez R, Passino K M. Stable Adaptive Control and Estimation for Nonlinear Systems-Neural and Fuzzy Approximator Techniques. New York: Wiley, 2002.
    [4] Ge S S, Hang C C, Lee T H, Zhang T. Stable Adaptive Neural Network Control. Boston: Kluwer, 2002.
    [5] Rovithakis G A. Stable adaptive neuro-control design via Lyapunov function derivative estimation. Automatica, 2001, 37(8): 1213-1221
    [6] Ge S S, Hong F, Lee T H. Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2004, 34(1): 499-516
    [7] Weller S R, Goodwin G C. Hysteresis switching adaptive control of linear multivariable systems. IEEE Transactions on Automatic Control, 1994, 39(7): 1360-1375
    [8] Piat F M, Morse A S. A cyclic switching strategy for parameter-adaptive control. IEEE Transactions on Automatic Control, 1994, 39(6): 1172-1183
    [9] Zhang T, Ge S S, Hang C C. Adaptive neural network control for strict-feedback nonlinear systems using backstepping design. Automatica, 2000, 36(12): 1835-1846
    [10] Ge S S, Hang C C, Zhang T. A direct method for robust adaptive nonlinear control with guaranteed transient performance. Systems and Control Letters, 1999, 37(5): 275-284
    [11] Lin Y, Liu H, Sun X X. A variable structure MRAC with expected transient and steady state performance. Automatica, 2006, 42(5): 805-813
    [12] Bechlioulis C P, Rovithakis G A. Prescribed performance adaptive control of SISO feedback linearizable systems with disturbances. In: Proceedings of the 16th Mediterranean Conference on Control and Automation. Ajaccio, France: IEEE, 2008. 1035-1040
    [13] Bechlioulis C P, Rovithakis G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Transactions on Automatic Control, 2008, 53(9): 2090-2099
    [14] Bechlioulis C P, Rovithakis G A. Prescribed performance adaptive control for multi-input multi-output affine in the control nonlinear systems. IEEE Transactions on Automatic Control, 2010, 55(5): 1220-1226
    [15] Yiannis K, Zoe D. Model-free robot joint position regulation and tracking with prescribed performance guarantees. Robotics and Autonomous Systems, 2012, 60(2): 214-226
    [16] Gai W D, Wang H L, Zhang J, Li Y X. Adaptive neural network dynamic inversion with prescribed performance for aircraft flight control. Journal of Applied Mathematics, 2013, 2013: Article ID 452653
    [17] Park J, Sandberg I W. Universal approximation using radial basis function networks. Neural Computation, 1991, 3(2): 246-257
    [18] Khalil H K. Nonlinear Systems (3rd edition). San Antonio: Pearson Education, 2002.
  • 加载中
计量
  • 文章访问数:  1824
  • HTML全文浏览量:  105
  • PDF下载量:  1167
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-11
  • 修回日期:  2014-06-10
  • 刊出日期:  2014-11-20

目录

    /

    返回文章
    返回