2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广义时变脉冲系统的输入输出时域稳定

苏晓明 阿迪亚

苏晓明, 阿迪亚. 广义时变脉冲系统的输入输出时域稳定. 自动化学报, 2014, 40(11): 2512-2520. doi: 10.3724/SP.J.1004.2014.02512
引用本文: 苏晓明, 阿迪亚. 广义时变脉冲系统的输入输出时域稳定. 自动化学报, 2014, 40(11): 2512-2520. doi: 10.3724/SP.J.1004.2014.02512
SU Xiao-Ming, Adiya. Input-output Finite-time Stability of Linear Time-varying Descriptor Impulse Systems. ACTA AUTOMATICA SINICA, 2014, 40(11): 2512-2520. doi: 10.3724/SP.J.1004.2014.02512
Citation: SU Xiao-Ming, Adiya. Input-output Finite-time Stability of Linear Time-varying Descriptor Impulse Systems. ACTA AUTOMATICA SINICA, 2014, 40(11): 2512-2520. doi: 10.3724/SP.J.1004.2014.02512

广义时变脉冲系统的输入输出时域稳定

doi: 10.3724/SP.J.1004.2014.02512
基金项目: 

国家自然科学基金(61074005), 辽宁省优秀人才基金(LR2012005)

详细信息
    作者简介:

    苏晓明 沈阳工业大学理学院教授. 主要研究方向为广义时变系统.E-mail: suxm@sut.edu.cn

    通讯作者:

    阿迪亚, 沈阳工业大学理学院硕士研究生. 主要研究方向为广义时变系统. 本文通信作者. E-mail: syeaady@gmail.com

Input-output Finite-time Stability of Linear Time-varying Descriptor Impulse Systems

Funds: 

Supported by National Nature Science Foundation of China (61074005), the Talent Project of the High Education of Liaoning province (LR2012005)

  • 摘要: 研究了广义时变脉冲系统的输入输出时域稳定问题.基于矩阵微分不等式(Differential matrix inequalities,DMI),给出了两个上述系统输入输出时域稳定的充分条件分别对应 L2干扰输入和 L∞干扰输入.这样的条件要求矩阵微分不等式解的存在性.接下来根据给出的充分条件设计了控制器,使得闭环系统输入输出时域稳定.本文的结果对于一般情况下的广义时变系统同样适用.最后,给出了两个算例来验证结果的有效性.
  • [1] Amato F, Ambrosino R, Cosentino C, De Tommasi G. Input-output finite-time stabilization of linear systems. Automatica, 2010, 46(9): 1558-1562
    [2] Amato F, Carannante G, De Tommasi G, Pironti A. Input-output finite-time stabilization of LTV systems via dynamic output feedback. In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC). Orlando, FL: IEEE, 2011. 1928-1932
    [3] Amato F, Carannante G, De Tommasi G, Pironti A. Input-output finite-time stability of linear systems: necessary and sufficient conditions. IEEE Transactions on Automatic Control, to be published
    [4] Amato F, Carannante G, De Tommasi G, Pironti A. Necessary and sufficient conditions for input-output finite-time stabilization of linear time-varying systems. In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC). Orlando, FL: IEEE, 2011. 1933-1937
    [5] Amato F, Carannante G, De Tommasi G, Pironti A. Input-output finite-time stabilization with constrained control inputs. In: Proceedings of the 51st IEEE Conference on Decision and Control. Maui, Hawaii: IEEE, 2012. 5731-5736
    [6] Kamenkov G. On stability of motion over a finite interval of time. Journal of Applied Mathematics and Mechanics, 1953, 17: 529-540
    [7] Lebedev A. On stability of motion during a given interval of time. Journal of Applied Mathematics and Mechanics, 1954, 18: 139-148
    [8] Weiss L, Indante E. Finite-time stability under perturbing forces and on product spaces. IEEE Transactions on Automatic Control, 1967, 12(1): 54-59
    [9] Amato F, Ambrosino R, Ariola M, Cosentino C. Finite-time stability of linear time-varying systems with jumps. Automatica, 2009, 45(5): 1354-1358
    [10] Amato F, Ambrosino R, Cosentino C. Finite-time stability of linear time-varying systems: analysis and controller design. IEEE Transactions on Automatic Control, 2010, 55(4): 1003-1008
    [11] Amato F, Ariola M, Cosentino C. Finite-time stabilization via dynamic output feedback. Automatica, 2006, 42(2): 337-342
    [12] Garcia G, Tarbouriech S, Bernussou J. Finite-time stabilization of linear time-varying continuous systems. IEEE Transactions on Automatic Control, 2009, 54(2): 364-369
    [13] Shen Y J. Finite-time control of linear parameter-varying systems with norm-bounded exogenous disturbance. Journal of Control Theory and Applications, 2008, 6(2): 184-188
    [14] Liu L, Sun J T. Finite-time stabilization of linear systems via impulsive control. International Journal of Control, 2008, 81(6): 905-909
    [15] Wang C J. Controllability and observability of linear time-varying singular systems. IEEE Transactions on Automatic Control, 1999, 44(10): 1901-1905
    [16] Zhang Xue-Feng, Zhang Qing-Ling. On controllability and observability of linear time-varying singular systems. Acta Automatica Sinica, 2009, 35(9): 1249-1253(张雪峰, 张庆灵. 线性时变广义系统的能控性和能观性问题. 自动化学报, 2009, 35(9): 1249-1253)
    [17] Wang C J. Impulse observability and impulse controllability of linear time-varying singular systems. Automatica, 2001, 37(11): 1867-1872
    [18] Kabla N A, Debeljković D L J. Finite-time stability of time-varying linear singular systems. In: Proceedings of the 37th IEEE Conference on Decision and Control. Belgrade: IEEE, 1998
    [19] Kabla N A, Debeljković D L J. Finite-time stability robustness of time-varying linear singular systems. In: Proceedings of the 3rd Asian Control Conference. Shanghai: IEEE, 2000
    [20] Kabla N A, Debeljković D L J. Finite-time instability of time-varying linear singular systems. In: Proceedings of the 1999 American Control Conference. San Diego: IEEE, 1999. 1796-1800
    [21] Su Xiao-Ming, Lv Ming-Zhu. Analysis of robust stability for linear time-varying uncertain periodic descriptor systems. Acta Automatica Sinica, 2006, 32(4): 481-488 (苏晓明, 吕明珠. 广义不确定周期时变系统的鲁棒稳定性分析. 自动化学报, 32(4): 481-488)
    [22] Wang Xiao-Hua, Liu Xiao-Ping. Disturbance decoupling of nonlinear generalized time-varying systems. Acta Automatica Sinica, 2000, 26(6): 798-820 (王晓华, 刘晓平. 非线性广义时变系统的干扰解耦. 自动化学报, 2000, 26(6): 798-820)
    [23] Zhao S W, Sun J T, Liu L. Finite-time stability of linear time-varying singular systems with impulsive effects. International Journal of Control, 2008, 81(11): 1824-1829
    [24] Xu J, Sun J. Finite-time stability of linear time-varying singular impulsive systems. IET Control Theory Applications, 2010, 4(10): 2239-2244
  • 加载中
计量
  • 文章访问数:  1648
  • HTML全文浏览量:  72
  • PDF下载量:  851
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-18
  • 修回日期:  2014-06-03
  • 刊出日期:  2014-11-20

目录

    /

    返回文章
    返回