2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于输出反馈滑模控制的分数阶超混沌系统同步

邓立为 宋申民

邓立为, 宋申民. 基于输出反馈滑模控制的分数阶超混沌系统同步. 自动化学报, 2014, 40(11): 2420-2427. doi: 10.3724/SP.J.1004.2014.02420
引用本文: 邓立为, 宋申民. 基于输出反馈滑模控制的分数阶超混沌系统同步. 自动化学报, 2014, 40(11): 2420-2427. doi: 10.3724/SP.J.1004.2014.02420
DENG Li-Wei, SONG Shen-Min. Synchronization of Fractional Order Hyperchaotic Systems Based on Output Feedback Sliding Mode Control. ACTA AUTOMATICA SINICA, 2014, 40(11): 2420-2427. doi: 10.3724/SP.J.1004.2014.02420
Citation: DENG Li-Wei, SONG Shen-Min. Synchronization of Fractional Order Hyperchaotic Systems Based on Output Feedback Sliding Mode Control. ACTA AUTOMATICA SINICA, 2014, 40(11): 2420-2427. doi: 10.3724/SP.J.1004.2014.02420

基于输出反馈滑模控制的分数阶超混沌系统同步

doi: 10.3724/SP.J.1004.2014.02420
基金项目: 

国家重点基础研究发展计划(973计划) (2012CB821205), 国家自然科学基金(61174037), 国家自然科学基金委创新研究群体科学基金项目 (61321062)资助

详细信息
    作者简介:

    邓立为 哈尔滨工业大学控制理论与制导技术研究中心博士研究生. 主要研究方向为分数阶系统, 航天器制导与控制.E-mail: dengliwei666@163.com

    通讯作者:

    宋申民, 哈尔滨工业大学航天学院教授.1996 年获得哈尔滨工业大学博士学位.主要研究方向为航天器制导与控制, 智能控制, 非线性控制与应用. 本文通信作者. E-mail: songshenmin@hit.edu.cn

Synchronization of Fractional Order Hyperchaotic Systems Based on Output Feedback Sliding Mode Control

Funds: 

Supported by National Basic Research Program of China (973 Program) (2012CB821205), National Natural Science Foundation of China (61174037), the Innovative Team Program of the National Natural Science Foundation of China (61321062)

  • 摘要: 以具有更大秘钥空间的分数阶超混沌系统为驱动系统和响应系统,利用具有实际应用意义的输出反馈滑模控制实现两个系统的同步.通过对同步误差系统方程进行结构分解,在辅助系统的基础上设计具有输出反馈特性的滑模控制律.在分数阶系统稳定性理论基础上利用MATLAB YALMIP工具箱对滑模参数进行整定,并利用分数阶Lyapunov稳定性定理证明了滑模控制律和自适应滑模控制律的稳定性.最后,数值仿真表明了本文方法的有效性和可行性.
  • [1] Lin T C, Lee T Y, Balas V E. Adaptive fuzzy sliding mode control for synchronization of uncertain fractional order chaotic systems. Chaos, Solitons and Fractals, 2011, 44(10): 791-801
    [2] Chen D Y, Zhang R F, ClintonSprott J, Ma X Y. Synchronization between integer-order chaotic systems and a class of fractional-order chaotic system based on fuzzy sliding mode control. Nonlinear Dynamics, 2012, 70(2): 1549-1561
    [3] Wang Z. Synchronization of an uncertain fractional-order chaotic system via backstepping sliding mode control. Discrete Dynamics in Nature and Society, 2013, Article ID 732503, DOI: 10.1155/2013/732503
    [4] Wang D F, Zhang J Y, Wang X Y. Synchronization of uncertain fractional-order chaotic systems with disturbance based on a fractional terminal sliding mode controller. Chinese Physics B, 2013, 22(4): 04057, DOI: 10.1088/1674-1056/22/4/040507
    [5] Hu Jian-Bing, Xiao Jian, Zhao Ling-Dong. Synchronizing fractional chaotic systems with different orders. Acta Physica Sinica, 2011, 60(11): 181-184(胡建兵, 肖建, 赵灵冬. 阶次不等的分数阶混沌系统同步. 物理学报, 2011, 60(11): 181-184)
    [6] Huang Li-Lian, Qi Xue. The synchronization of fractional order chaotic systems with different orders based on adaptive sliding mode control. Acta Physica Sinica, 2013, 62(8): 61-67(黄丽莲, 齐雪. 基于自适应滑模控制的不同维分数阶混沌系统的同步. 物理学报, 2013, 62(8): 61-67)
    [7] Wu Y P, Wang G D. Synchronization between fractional-order and integer-order hyperchaotic systems via sliding mode controller. Journal of Applied Mathematics, 2013, Article ID 151025, DOI: 10.1155/2013/151025
    [8] Aghababa M P. Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dynamics, 2012, 69(1-2): 247-261
    [9] Wang Z, Huang X, Lu J W. Sliding mode synchronization of chaotic and hyperchaotic systems with mismatched fractional derivatives. Transactions of the Institute of Measurement and Control, 2013, 35(6): 713-719
    [10] Li Dong, Deng Liang-Ming, Du Yong-Xia, Yang Yuan-Yuan. Synchronization for fractional order haperhaotic Chen system and fractional order hyperchaotic Rössler system with different structure. Acta Physica Sinica, 2012, 61(5): 51-59(李东, 邓良明, 杜永霞, 杨媛媛. 分数阶超混沌Chen系统和分数阶超混沌Rössler系统的异结构同步. 物理学报, 2012, 61(5): 51-59)
    [11] Zhao Ling-Dong, Hu Jian-Bing, Bao Zhi-Hua, Zhang Guo-An, Xu Chen, Zhang Shi-Bing. A finite-time stable theorem about fractional systems and finite-time synchronizing fractional super chaotic Lorenz systems. Acta Physica Sinica, 2011, 60(10): 93-97(赵灵冬, 胡建兵, 包志华, 章国安, 徐晨, 张士兵. 分数阶系统有限时间稳定性理论及分数阶超混沌Lorenz系统有限时间同步. 物理学报, 2011, 60(10): 93-97)
    [12] Hou Y Y, Liao T L, Yan J J. H∞ synchronization of chaotic systems using output feedback control design. Physica A: Statistical Mechanics and its Applications, 2007, 379(1): 81-89
    [13] Pai M C. Robust synchronization of chaotic systems using adaptive sliding mode output feedback control. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 2012, 226(5): 598-605
    [14] He Chun, Ye Yong-Qiang, Jiang Bin, Zhou Xin. A novel edge detection method based on fractional-order calculus mask. Acta Automatica Sinica, 2012, 38(5): 776-787(何春, 叶永强, 姜斌, 周鑫. 一种基于分数阶次微积分模板的新型边缘检测方法. 自动化学报, 2012, 38(5): 776-787)
    [15] Yang Hong-Yong, Guo Lei, Zhang Yu-Ling, Yao Xiu-Ming. Movement consensus of complex fractional-order multi-agent systems. Acta Automatica Sinica, 2014, 40(3): 489-496(杨洪勇, 郭雷, 张玉玲, 姚秀明. 复杂分数阶多自主体系统的运动一致性. 自动化学报, 2014, 40(3): 489-496)
    [16] Lan Y H, He L J. Sliding mode and LMI based control for fractional order unified chaotic systems. In: Proceedings of the 31st Chinese Control Conference. Hefei, China: IEEE Computer Society, 2012. 3192-3196
    [17] Yin C, Chen Y, Zhong S M. LMI based design of a sliding mode controller for a class of uncertain fractional-order nonlinear systems. In: Proceedings of the 1st American Control Conference. Washington D.C., United States: Institute of Electrical and Electronics Engineers Inc., 2013. 6511-6516
    [18] Edwards C, Spurgeon S K. Sliding mode stabilization of uncertain systems using only output information. International Journal of Control, 1995, 62(5): 1129-1144
    [19] Lofberg J. YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the 2004 IEEE International Symposium on Computer Aided Control System Design. Taipei, China: Institute of Electrical and Electronics Engineers Inc., 2004. 284-289
    [20] Kwan C M. On variable structure output feedback controllers. IEEE Transactions on Automatic Control, 1996, 41(11): 1691-1693
    [21] Koh B S. New Results in Stability, Control, and Estimation of Fractional Order Systems [Ph.D. dissertation], Texas A&M University, USA, 2011
    [22] Si-Ammour A, Djennoune S, Bettayeb M. A sliding mode control for linear fractional systems with input and state delays. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(5): 2310-2318
    [23] Aghababa M P. Design of a chatter-free terminal sliding mode controller for nonlinear fractional-order dynamical systems. International Journal of Control, 2013, 62(5): 1129-1144
    [24] Li Wen, Zhao Hui-Min. Rational function approximation for fractional order differential and integral operators. Acta Automatica Sinica, 2011, 37(8): 999-1005(李文, 赵慧敏. 一种分数阶微积分算子的有理函数逼近方法. 自动化学报, 2011, 37(8): 999-1005)
  • 加载中
计量
  • 文章访问数:  2025
  • HTML全文浏览量:  73
  • PDF下载量:  1048
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-19
  • 修回日期:  2014-05-15
  • 刊出日期:  2014-11-20

目录

    /

    返回文章
    返回