[1]
|
Lin T C, Lee T Y, Balas V E. Adaptive fuzzy sliding mode control for synchronization of uncertain fractional order chaotic systems. Chaos, Solitons and Fractals, 2011, 44(10): 791-801
|
[2]
|
Chen D Y, Zhang R F, ClintonSprott J, Ma X Y. Synchronization between integer-order chaotic systems and a class of fractional-order chaotic system based on fuzzy sliding mode control. Nonlinear Dynamics, 2012, 70(2): 1549-1561
|
[3]
|
Wang Z. Synchronization of an uncertain fractional-order chaotic system via backstepping sliding mode control. Discrete Dynamics in Nature and Society, 2013, Article ID 732503, DOI: 10.1155/2013/732503
|
[4]
|
Wang D F, Zhang J Y, Wang X Y. Synchronization of uncertain fractional-order chaotic systems with disturbance based on a fractional terminal sliding mode controller. Chinese Physics B, 2013, 22(4): 04057, DOI: 10.1088/1674-1056/22/4/040507
|
[5]
|
Hu Jian-Bing, Xiao Jian, Zhao Ling-Dong. Synchronizing fractional chaotic systems with different orders. Acta Physica Sinica, 2011, 60(11): 181-184(胡建兵, 肖建, 赵灵冬. 阶次不等的分数阶混沌系统同步. 物理学报, 2011, 60(11): 181-184)
|
[6]
|
Huang Li-Lian, Qi Xue. The synchronization of fractional order chaotic systems with different orders based on adaptive sliding mode control. Acta Physica Sinica, 2013, 62(8): 61-67(黄丽莲, 齐雪. 基于自适应滑模控制的不同维分数阶混沌系统的同步. 物理学报, 2013, 62(8): 61-67)
|
[7]
|
Wu Y P, Wang G D. Synchronization between fractional-order and integer-order hyperchaotic systems via sliding mode controller. Journal of Applied Mathematics, 2013, Article ID 151025, DOI: 10.1155/2013/151025
|
[8]
|
Aghababa M P. Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dynamics, 2012, 69(1-2): 247-261
|
[9]
|
Wang Z, Huang X, Lu J W. Sliding mode synchronization of chaotic and hyperchaotic systems with mismatched fractional derivatives. Transactions of the Institute of Measurement and Control, 2013, 35(6): 713-719
|
[10]
|
Li Dong, Deng Liang-Ming, Du Yong-Xia, Yang Yuan-Yuan. Synchronization for fractional order haperhaotic Chen system and fractional order hyperchaotic Rössler system with different structure. Acta Physica Sinica, 2012, 61(5): 51-59(李东, 邓良明, 杜永霞, 杨媛媛. 分数阶超混沌Chen系统和分数阶超混沌Rössler系统的异结构同步. 物理学报, 2012, 61(5): 51-59)
|
[11]
|
Zhao Ling-Dong, Hu Jian-Bing, Bao Zhi-Hua, Zhang Guo-An, Xu Chen, Zhang Shi-Bing. A finite-time stable theorem about fractional systems and finite-time synchronizing fractional super chaotic Lorenz systems. Acta Physica Sinica, 2011, 60(10): 93-97(赵灵冬, 胡建兵, 包志华, 章国安, 徐晨, 张士兵. 分数阶系统有限时间稳定性理论及分数阶超混沌Lorenz系统有限时间同步. 物理学报, 2011, 60(10): 93-97)
|
[12]
|
Hou Y Y, Liao T L, Yan J J. H∞ synchronization of chaotic systems using output feedback control design. Physica A: Statistical Mechanics and its Applications, 2007, 379(1): 81-89
|
[13]
|
Pai M C. Robust synchronization of chaotic systems using adaptive sliding mode output feedback control. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 2012, 226(5): 598-605
|
[14]
|
He Chun, Ye Yong-Qiang, Jiang Bin, Zhou Xin. A novel edge detection method based on fractional-order calculus mask. Acta Automatica Sinica, 2012, 38(5): 776-787(何春, 叶永强, 姜斌, 周鑫. 一种基于分数阶次微积分模板的新型边缘检测方法. 自动化学报, 2012, 38(5): 776-787)
|
[15]
|
Yang Hong-Yong, Guo Lei, Zhang Yu-Ling, Yao Xiu-Ming. Movement consensus of complex fractional-order multi-agent systems. Acta Automatica Sinica, 2014, 40(3): 489-496(杨洪勇, 郭雷, 张玉玲, 姚秀明. 复杂分数阶多自主体系统的运动一致性. 自动化学报, 2014, 40(3): 489-496)
|
[16]
|
Lan Y H, He L J. Sliding mode and LMI based control for fractional order unified chaotic systems. In: Proceedings of the 31st Chinese Control Conference. Hefei, China: IEEE Computer Society, 2012. 3192-3196
|
[17]
|
Yin C, Chen Y, Zhong S M. LMI based design of a sliding mode controller for a class of uncertain fractional-order nonlinear systems. In: Proceedings of the 1st American Control Conference. Washington D.C., United States: Institute of Electrical and Electronics Engineers Inc., 2013. 6511-6516
|
[18]
|
Edwards C, Spurgeon S K. Sliding mode stabilization of uncertain systems using only output information. International Journal of Control, 1995, 62(5): 1129-1144
|
[19]
|
Lofberg J. YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the 2004 IEEE International Symposium on Computer Aided Control System Design. Taipei, China: Institute of Electrical and Electronics Engineers Inc., 2004. 284-289
|
[20]
|
Kwan C M. On variable structure output feedback controllers. IEEE Transactions on Automatic Control, 1996, 41(11): 1691-1693
|
[21]
|
Koh B S. New Results in Stability, Control, and Estimation of Fractional Order Systems [Ph.D. dissertation], Texas A&M University, USA, 2011
|
[22]
|
Si-Ammour A, Djennoune S, Bettayeb M. A sliding mode control for linear fractional systems with input and state delays. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(5): 2310-2318
|
[23]
|
Aghababa M P. Design of a chatter-free terminal sliding mode controller for nonlinear fractional-order dynamical systems. International Journal of Control, 2013, 62(5): 1129-1144
|
[24]
|
Li Wen, Zhao Hui-Min. Rational function approximation for fractional order differential and integral operators. Acta Automatica Sinica, 2011, 37(8): 999-1005(李文, 赵慧敏. 一种分数阶微积分算子的有理函数逼近方法. 自动化学报, 2011, 37(8): 999-1005)
|