2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

下肢康复机器人及其交互控制方法

胡进 侯增广 陈翼雄 张峰 王卫群

胡进, 侯增广, 陈翼雄, 张峰, 王卫群. 下肢康复机器人及其交互控制方法. 自动化学报, 2014, 40(11): 2377-2390. doi: 10.3724/SP.J.1004.2014.02377
引用本文: 胡进, 侯增广, 陈翼雄, 张峰, 王卫群. 下肢康复机器人及其交互控制方法. 自动化学报, 2014, 40(11): 2377-2390. doi: 10.3724/SP.J.1004.2014.02377
HU Jin, HOU Zeng-Guang, CHEN Yi-Xiong, ZHANG Feng, WANG Wei-Qun. Lower Limb Rehabilitation Robots and Interactive Control Methods. ACTA AUTOMATICA SINICA, 2014, 40(11): 2377-2390. doi: 10.3724/SP.J.1004.2014.02377
Citation: HU Jin, HOU Zeng-Guang, CHEN Yi-Xiong, ZHANG Feng, WANG Wei-Qun. Lower Limb Rehabilitation Robots and Interactive Control Methods. ACTA AUTOMATICA SINICA, 2014, 40(11): 2377-2390. doi: 10.3724/SP.J.1004.2014.02377

下肢康复机器人及其交互控制方法

doi: 10.3724/SP.J.1004.2014.02377
基金项目: 

国家自然科学基金项目(61225017, 61175076),国家国际科技合作专项项目(2011DFG13390)资助

详细信息
    作者简介:

    胡进 中国科学院自动化研究所博士研究生. 2005 年北京科技大学获学士学位. 主要研究方向为下肢康复机器人的训练策略和交互控制方法.E-mail: hujin8659@gmail.com

    通讯作者:

    侯增广, 中国科学院自动化研究所研究员. 主要研究方向为机器人控制, 智能控制理论与方法, 嵌入式系统软硬件开发,医学和健康自动化领域的康复与手术机器人. 本文通信作者.E-mail: zengguang.hou@ia.ac.cn

Lower Limb Rehabilitation Robots and Interactive Control Methods

Funds: 

Supported by National Natural Science Foundation of China(61225017, 61175076) and the International Science & Technology Cooperation Project of China (2011DFG13390)

  • 摘要: 瘫痪病人的数量与日俱增,其康复训练通常是一个长期的过程.相对于传统的理疗,使用机器人辅助康复训练能够提高效率,降低成本,减少理疗师的人员和体力消耗,因此节省了康复医疗资源,并且可以完成更加多样的主被动训练策略,从而提高了康复效果.根据患者进行康复运动时的身体姿态,下肢康复机器人可分以下4类: 坐卧式机器人、直立式机器人、辅助起立式机器人和多体位式机器人,坐卧式又细分为末端式和外骨骼式,直立式进一步划分为悬吊减重(Suspending body weight support,sBWS) 式步态训练机器人和独立可穿戴式机器人.由于下肢康复机器人是与运动功能受损的患肢相互作用,为了给患者创造一个安全、舒适、自然的训练环境,机器人和患者之间的交互控制不可或缺.根据获取运动意图时所使用的传感器信号,交互控制可以基本分为两类: 1)基于力信号的交互控制; 2)基于生物医学信号的交互控制.在基于力信号的交互控制中,力位混合控制和阻抗控制是最为常用的两种方法; 而在基于生物医学信号的交互控制中,表面肌电 (Surface electromyogram,sEMG) 和脑电(Electroencephalogram,EEG) 最常被用于运动意图的推断.
  • [1] Shen Hui-Yong, Liu Hu. A survey and prospect of the study on SCI repair. Chinese Journal of Spine and Spinal Cord, 2008, 18(10): 785-788(沈慧勇, 刘鹄. 脊髓损伤修复研究的现状与展望. 中国脊柱脊髓杂志, 2008, 18(10): 785-788)
    [2] Liao Li-Min, Wu Juan, Ju Yan-He, Li Jian-Jun, Fu Guang, Xie Ke-Ji, Xu Zhi-Hui, Xu Guang-Xu, Huang Xiao-Ting, Liu Tie-Jun, Cong Hui-Ling, Gao Li-Juan, Qu Chuang-Yu, Song Bo, Shen Hong, Wang Jian-Ye. Management of urinary system and clinical rehabilitation guide for SCI patients. Chinese Journal of Rehabilitation Theory and Practice, 2013, 19(4): 301-317(廖利民, 吴娟, 鞠彦合, 李建军, 付光, 谢克基, 徐智慧, 许光旭, 黄孝庭, 刘铁军, 丛惠玲, 高丽娟, 瞿创予, 宋波, 沈宏, 王建业. 脊髓损伤患者泌尿系管理与临床康复指南. 中国康复理论与实践, 2013, 19(4): 301-317)
    [3] Sun H Y, Zhang L X, Li C S. Dynamic analysis of horizontal lower limbs rehabilitative robot. In: Proceedings of the 2009 International Conference on Intelligent Computing and Intelligent Systems. Shanghai, China: IEEE, 2009. 656-660
    [4] Zhang L X, Sun H Y, Li C S. Experiment study of impedance control on horizontal lower limbs rehabilitation robot. In: Proceedings of the 2010 International Conference on Information and Automation. Harbin, China: IEEE, 2010. 1421-1425
    [5] Bouri M, Le Gall B, Clavel R. A new concept of parallel robot for rehabilitation and fitness: the Lambda. In: Proceedings of the 2009 International Conference on Robotics and Biomimetics. Guilin, China: IEEE, 2009. 2503-2508
    [6] Akdoğan E, Adli M A. The design and control of a therapeutic exercise robot for lower limb rehabilitation: Physiotherabot. Mechatronics, 2011, 21(3): 509-522
    [7] Akdoğan E, Adli M A, Bennett M N. A human-machine interface design for direct rehabilitation using a rehabilitation robot. In: Proceedings of the 2008 International Conference on Soft Computing as Transdisciplinary Science and Technology. New York, USA: ACM, 2008. 78-83
    [8] Akdoğan E, Tacgin E, Adli M A. Knee rehabilitation using an intelligent robotic system. Journal of Intelligent Manufacturing, 2009, 20(2): 195-202
    [9] Akdoğan E, Şişman Z. A muscular activation controlled rehabilitation robot system. In: Proceedings of the 15th International Conference on Knowledge-Based and Intelligent Information and Engineering Systems Part I. Berlin, Heidelberg: Springer, 2011. 271-279
    [10] Schmitt C, Métrailler P. The Motion MakerTM: a rehabilitation system combining an orthosis with closed-loop electrical muscle stimulation. In: Proceedings of the 8th Vienna International Workshop on Functional Electrical Stimulation. Vienna, Austria, 2004. 117-120
    [11] Metrailler P, Blanchard V, Perrin I, Brodard R, Frischknecht R, Schmitt C, Fournier J, Bouri M, Clavel R. Improvement of rehabilitation possibilities with the Motion MakerTM. In: Proceedings of the 1st IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. Pisa, Italy: IEEE, 2006. 359-364
    [12] Swortec S A. Motion Maker [Online], available: http: //www.swortec.ch/Documents/others/001770-Poster%20 SWORTEC_%20EN_2010_print_A0.pdf, July 24, 2014
    [13] Visintin M, Barbeau H, Korner-Bitensky N, Mayo N E. A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke, 1998, 29(6): 1122-1128
    [14] Hesse S, Uhlenbrock D. A mechanized gait trainer for restoration of gait. Journal of Rehabilitation Research and Development, 2000, 37(6): 701-708
    [15] Werner C, von Frankenberg S, Treig T, Konrad M, Hesse S. Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients — a randomized crossover study. Stroke, 2002, 33(12): 2895-2901
    [16] Pohl M, Werner C, Holzgraefe M, Kroczek G, Mehrholz J, Wingendorf I, Hoelig G, Koch R, Hesse S. Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clinical Rehabilitation, 2007, 21(1): 17-27
    [17] Peurala S H, Airaksinen O, Huuskonen P, Jakala P, Juhakoski M, Sandell K, Tarkka I M, Sivenius J. Effects of intensive therapy using gait trainer or floor walking exercises early after stroke. Journal of Rehabilitation Medicine, 2009, 41(3): 166-173
    [18] Smania N, Bonetti P, Gandolfi M, Cosentino A, Waldner A, Hesse S, Werner C, Bisoffi G, Geroin C, Munari D. Improved gait after repetitive locomotor training in children with cerebral palsy. American Journal of Physical Medicine & Rehabilitation, 2011, 90(2): 137-149
    [19] Iosa M, Morone G, Bragoni M, De Angelis D, Venturiero V, Coiro P, Pratesi L, Paolucci S. Driving electromechanically assisted gait trainer for people with stroke. Journal of Rehabilitation Research and Development, 2011, 48(2): 135-145
    [20] Colombo G, Joerg M, Schreier R, Dietz V. Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research and Development, 2000, 37(6): 693-700
    [21] Colombo G, Wirz M, Dietz V. Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord, 2001, 39(5): 252-255
    [22] Wirz M, Zemon D, Rupp R, Scheel A, Colombo G, Dietz V, Hornby T. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Archives of Physical Medicine and Rehabilitation, 2005, 86(4): 672-680
    [23] Hornby T, Zemon D, Campbell D. Robotic-assisted, body-weight supported treadmill training in individuals following motor incomplete spinal cord injury. Physical Therapy, 2005, 85(1): 52-66
    [24] Hidler J, Nichols D, Pelliccio M, Brady K, Campbell D D, Kahn J H, Hornby T G. Multicenter randomized clinical trial evaluating the effectiveness of the lokomat in subacute stroke. NeuroRehabilitation and Neural Repair, 2009, 23(1): 5-13
    [25] Westlake K P, Patten C. Pilot study of lokomat versus manual-assisted treadmill training for locomotor recovery post-stroke. Journal of NeuroEngineering and Rehabilitation, 2009, 6(1): 18
    [26] Hornby T G, Campbell D D, Zemon D H, Kahn J H. Clinical and quantitative evaluation of robotic-assisted treadmill walking to retrain ambulation after spinal cord injury. Topics in Spinal Cord Injury Rehabilitation, 2005, 11(2): 1-17
    [27] West R G. Powered gait orthosis and method of utilizing same, U.S. Patent 7041069, May 9, 2006
    [28] Fisher S, Lucas L, Thrasher T A. Robot-assisted gait training for patients with hemiparesis due to stroke. Topics in Stroke Rehabilitation, 2011, 18(3): 269-276
    [29] Freivogel S, Mehrholz J, Husak-Sotomayor T, Schmalohr D. Gait training with the newly developed 'LokoHelp'-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury: a feasibility study. Brain Injury, 2008, 22(7-8): 625-632
    [30] Freivogel S, Schmalohr D, Mehrholz J. Improved walking ability and reduced therapeutic stress with an electromechanical gait device. Journal of Rehabilitation Medicine, 2009, 41(9): 734-739
    [31] Bouri M, Stauffer Y, Schmitt C, Allemand Y, Gnemmi S, Clavel R, Metrailler P, Brodard R. The WalkTrainer: a robotic system for walking rehabilitation. In: Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics. Kunming, China: IEEE, 2006. 1616-1621
    [32] Stauffer Y, Allemand Y, Bouri M, Fournier J, Clavel R, Métrailler P, Brodard R, Reynard F. The WalkTrainer — a new generation of walking reeducation device combining orthoses and muscle stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2009, 17(1): 38-45
    [33] Stauffer Y, Bouri M, Fournier J, Clavel R, Allemand Y, Brodard R. A novel verticalized reeducation device for spinal cord injuries: the WalkTrainer, from design to the clinical trials. In: Robotics 2010 Current and Future Challenges. Croatia: In-tech Publishing, 2010. 193-209
    [34] Peshkin M, Brown D, Santos-Munne J, Makhlin A, Lewis E, Colgate J, Patton J, Schwandt D. KineAssist: a robotic overground gait and balance training device. In: Proceedings of the 9th International Conference on Rehabilitation Robotics. Chicago, USA: IEEE, 2005. 241-246
    [35] Patton J, Brown D A, Peshkin M, Santos-Munne J J, Makhlin A, Lewis E, Colgate J E, Schwandt D. KineAssist: design and development of a robotic overground gait and balance therapy device. Topics in Stroke Rehabilitation, 2008, 15(2): 131-139
    [36] Patton J L, Brown D, Lewis E, Crombie G, Santos J, Makhlin A, Colgate J E, Peshkin M. Motility evaluation of a novel overground functional mobility tool for post stroke rehabilitation. In: Proceedings of the 10th International Conference on Rehabilitation Robotics. Noordwijk, Netherlands: IEEE, 2007. 1049-1054
    [37] Burgess J K, Weibel G C, Brown D A. Overground walking speed changes when subjected to body weight support conditions for nonimpaired and post stroke individuals. Journal of NeuroEngineering and Rehabilitation, 2010, 7(1): 6
    [38] Goffer A. Gait-Locomotor Apparatus, E.P. Patent 1260201, December 10, 2008
    [39] Esquenazi A, Talaty M, Packel A, Saulino M. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. American Journal of Physical Medicine and Rehabilitation, 2012, 91(11): 911-921
    [40] Zeilig G, Weingarden H, Zwecker M, Dudkiewicz I, Bloch A, Esquenazi A. Safety and tolerance of the ReWalkm TM exoskeleton suit for ambulation by people with complete spinal cord injury: a pilot study. Journal of Spinal Cord Medicine, 2012, 35(2): 96-101
    [41] Kawamoto H, Sankai Y. Power assist system HAL-3 for gait disorder person. In: Proceedings of the 8th International Conference on Computers Helping People with Special Needs. London, UK: Springer-Verlag, 2002. 196-203
    [42] Suzuki K, Mito G, Kawamoto H, Hasegawa Y, Sankai Y. Intention-based walking support for paraplegia patients with Robot Suit HAL. Advanced Robotics, 2007, 21(12): 1441-1469
    [43] Sankai Y. HAL: hybrid assistive limb based on cybernics. In: Proceedings of the 13th International Symposium on Robotics Research. Berlin, Heidelberg: Springer, 2010. 25-34
    [44] Kawamoto H, Hayashi T, Sakurai T, Eguchi K, Sankai Y. Development of single leg version of HAL for hemiplegia. In: Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Minneapolis, USA: IEEE, 2009. 5038-5043
    [45] Cao E, Inoue Y, Liu T, Shibata K. A sit-to-stand trainer system in lower limb rehabilitation. In: Proceedings of the 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Budapest, Hungary: IEEE, 2011. 116-121
    [46] Mederic P, Pasqui V, Plumet F, Bidaud P. Sit to stand transfer assisting by an intelligent walking-aid. In: Proceedings of the 7th International Conference on Climbing and Walking Robots. Berlin, Heidelberg: Springer, 2005. 1127-1135
    [47] Pasqui V, Saint-Bauzel L, Sigaud O. Characterization of a least effort user-centered trajectory for sit-to-stand assistance. In: IUTAM Symposium on Dynamics Modeling and Interaction Control in Virtual and Real Environments. Netherlands: Springer, 2011. 197-204
    [48] Saint-Bauzel L, Pasqui V, Monteil I. A reactive robotized interface for lower limb rehabilitation: clinical results. IEEE Transactions on Robotics, 2009, 25(3): 583-592
    [49] Pons J L. Wearable Robots: Biomechatronic Exoskeletons. Hoboken, USA: John Wiley and Sons, 2008. 127-149
    [50] Raibert M H, Craig J J. Hybrid position/force control of manipulators. Journal of Dynamic Systems, Measurement, and Control, 1981, 103(2): 126-133
    [51] Kumar N, Panwar V, Sukavanam N, Sharma P, Borm J H. Neural network based hybrid force/position control for robot manipulators. International Journal of Precision Engineering and Manufacturing, 2011, 12(3): 419-426
    [52] Bernhardt M, Frey M, Colombo G, Riener R. Hybrid force-position control yields cooperative behaviour of the rehabilitation robot lokomat. In: Proceedings of the 9th International Conference on Rehabilitation Robotics. Chicago, USA: IEEE, 2005. 536-539
    [53] Ju M S, Lin C C, Lin D H, Hwang I S, Chen S M. A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2005, 13(3): 349-358
    [54] Jiang X, Xiong C, Sun R, Xiong Y. Fuzzy hybrid force-position control for the robotic arm of an upper limb rehabilitation robot powered by pneumatic muscles. In: Proceedings of the 2010 International Conference on E-Product E-Service and E-Entertainment. He'nan, China: IEEE, 2010. 1-4
    [55] Tsoi Y H, Xie S Q. Impedance control of ankle rehabilitation robot. In: Proceedings of the 2008 IEEE International Conference on Robotics and Biomimetics. Bangkok: IEEE, 2009. 840-845
    [56] Hogan N. Impedance control — an approach to manipulation, Part I-Theory, Part II-Implementation, Part III-Applications. Journal of Dynamic Systems Measurement and Control-Transactions of the ASME, 1985, 107(1): 1-24
    [57] Yang Y, Wang L, Tong J, Zhang L. Arm rehabilitation robot impedance control and experimentation. In: Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics. Kunming, China: IEEE, 2006. 914-918
    [58] Jung S, Hsia T. Neural network impedance force control of robot manipulator. IEEE Transactions on Industrial Electronics, 1998, 45(3): 451-461
    [59] Duschau-Wicke A, von Zitzewitz J, Caprez A, Luenenburger L, Riener R. Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18(1): 38-48
    [60] Hussein S, Schmidt H, Krueger J. Adaptive control of an end-effector based electromechanical gait rehabilitation device. In: Proceedings of the 2009 IEEE International Conference on Rehabilitation Robotics. Kyoto, Japan: IEEE, 2009. 425-430
    [61] Robertson G, Caldwell G, Hamill J, Kamen G, Whittlesey S. Research Methods in Biomechanics. Champaign, USA: Human Kinetics, 2013. 179-182
    [62] De Luca C. The use of surface electromyography in biomechanics. Journal of Applied Biomechanics, 1997, 13(2): 135-163
    [63] Huang H J, Ferris D P. Neural coupling between upper and lower limbs during recumbent stepping. Journal of Applied Physiology, 2004, 97(4): 1299-1308
    [64] Sartori M, Reggiani M, Mezzato C, Pagello E. A lower limb EMG-driven biomechanical model for applications in rehabilitation robotics. In: Proceedings of the 2009 International Conference on Advanced Robotics. Munich, Germany: IEEE, 2009. 905-911
    [65] Pittaccio S, Viscuso S. An EMG-controlled SMA device for the rehabilitation of the ankle joint in post-acute stroke. Journal of Materials Engineering and Performance, 2011, 20(4-5): 666-670
    [66] Yin Y H, Fan Y J, Xu L D. EMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeleton. IEEE Transactions on Information Technology in Biomedicine, 2012, 16(4): 542-549
    [67] Tong Li-Na, Hou Zeng-Guang, Peng Liang, Wang Wei-Qun, Chen Yi-Xiong, Tan Min. Multi-channel sEMG time series analysis based human motion recognition method. Acta Automatica Sinica, 2014, 40(5): 810-821(佟丽娜, 侯增广, 彭亮, 王卫群, 陈翼雄, 谭民. 基于多路sEMG时序分析的人体运动模式识别方法. 自动化学报, 2014, 40(5): 810-821)
    [68] Niedermeyer E, da Silva F L. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Philadelphia, USA: Lippincott Williams and Wilkins, 2005. 18-28
    [69] Wieser M, Haefeli J, Buetler L, Jaencke L, Riener R, Koeneke S. Temporal and spatial patterns of cortical activation during assisted lower limb movement. Experimental Brain Research, 2010, 203(1): 181-191
    [70] Wagner J, Solis-Escalante T, Grieshofer P, Neuper C, Mueller-Putz G, Scherer R. Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects. Neuroimage, 2012, 63(3): 1203-1211
    [71] Artoni F, Chisari C, Menicucci D, Fanciullacci C, Micera S. REMOV: EEG artifacts removal methods during lokomat lower-limb rehabilitation. In: Proceedings of the 4th RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. Rome, Italy: IEEE, 2012. 992-997
    [72] Cheron G, Duvinage M, De Saedeleer C, Castermans T, Bengoetxea A, Petieau M, Seetharaman K, Hoellinger T, Dan B, Dutoit T, Labini F S, Lacquaniti F, Ivanenko Y. From spinal central pattern generators to cortical network: integrated BCI for walking rehabilitation. Neural Plasticity, 2012, 2012: Article ID 375148
    [73] Gwin J T, Ferris D P. An EEG-based study of discrete isometric and isotonic human lower limb muscle contractions. Journal of NeuroEngineering and Rehabilitation, 2012, 9(1): 35-45
    [74] Duvinage M, Castermans T, Petieau M, Seetharaman K, Hoellinger T, Cheron G, Dutoit T. A subjective assessment of a P300 BCI system for lower-limb rehabilitation purposes. In: Proceedings of the 32th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Diego, USA: IEEE, 2012. 3845-3849
  • 加载中
计量
  • 文章访问数:  3746
  • HTML全文浏览量:  218
  • PDF下载量:  3539
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-05
  • 修回日期:  2014-07-18
  • 刊出日期:  2014-11-20

目录

    /

    返回文章
    返回