2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于局部保持的核稀疏表示字典学习

陈思宝 赵令 罗斌

陈思宝, 赵令, 罗斌. 基于局部保持的核稀疏表示字典学习. 自动化学报, 2014, 40(10): 2295-2305. doi: 10.3724/SP.J.1004.2014.02295
引用本文: 陈思宝, 赵令, 罗斌. 基于局部保持的核稀疏表示字典学习. 自动化学报, 2014, 40(10): 2295-2305. doi: 10.3724/SP.J.1004.2014.02295
CHEN Si-Bao, ZHAO Ling, LUO Bin. Locality Preserving Based Kernel Dictionary Learning for Sparse Representation. ACTA AUTOMATICA SINICA, 2014, 40(10): 2295-2305. doi: 10.3724/SP.J.1004.2014.02295
Citation: CHEN Si-Bao, ZHAO Ling, LUO Bin. Locality Preserving Based Kernel Dictionary Learning for Sparse Representation. ACTA AUTOMATICA SINICA, 2014, 40(10): 2295-2305. doi: 10.3724/SP.J.1004.2014.02295

基于局部保持的核稀疏表示字典学习

doi: 10.3724/SP.J.1004.2014.02295
基金项目: 

国家自然科学基金 (61202228, 610731116),高等学校博士学科点专项科研基金(20103401120005),安徽省高校自然科学研究重点项目(KJ2012A004, KJ2012A008)资助

详细信息
    作者简介:

    赵令 安徽大学计算机科学与技术学院硕士研究生.主要研究方向为图像处理与模式识别.E-mail: ahuzl1990@hotmail.com

Locality Preserving Based Kernel Dictionary Learning for Sparse Representation

Funds: 

Supported by National Natural Science Foundation of China (61202228,610731116), Doctoral Program Foundation of Institutions of Higher Education of China (20103401120005), and Collegiate Natural Science Fund of Anhui Province (KJ2012A004, KJ2012A008)

  • 摘要: 为了利用核技巧提高分类性能, 在局部保持的稀疏表示 字典学习的基础上, 提出了两种核化的稀疏表示字典学习方法. 首先, 原始训练数据被投影到高维核空间, 进行基于局部保持的核稀疏表示字典学习; 其次, 在稀疏系数上强加核局部保持约束, 进行基于核局部保持的核稀疏表示字典学习. 实验结果表明, 该方法的分类识别结果优于其他方法.
  • [1] Liu Fang, Wu Jiao, Yang Shu-Yuan, Jiao Li-Cheng. Research advances on structured compressive sensing. Acta Automatica Sinica, 2013, 39(12): 1980-1995(刘芳, 武娇, 杨淑媛, 焦李成. 结构化压缩感知研究进展. 自动化学报, 2013, 39(12): 1980-1995)
    [2] [2] Wright J, Yang A Y, Ganesh A, Sastry S S. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227
    [3] Hu Zheng-Ping, Song Shu-Fen. Robust image recognition algorithm of maximum likelihood estimation sparse representation based on class-related neighbors subspace. Acta Automatica Sinica, 2012, 38(9): 1420-1427(胡正平, 宋淑芬. 基于类别相关近邻子空间的最大似然稀疏表示鲁棒图像识别算法. 自动化学报, 2012, 38(9): 1420-1427)
    [4] Ma Xiao-Hu, Tan Yan-Qi. Face recognition based on discriminant sparsity preserving embedding. Acta Automatica Sinica, 2014, 40(1): 73-82(马小虎, 谭延琪. 基于鉴别稀疏保持嵌入的人脸识别算法. 自动化学报, 2014, 40(1): 73-82)
    [5] [5] Engan K, Aase S O, Hakon H J. Method of optimal directions for frame design. In: Proceedings of Acoustics, Speech, and Signal Processing. Arizona, USA: IEEE, 1999, 5: 2443-2446
    [6] [6] Aharon M, Elad M, Bruckstein M A. The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322
    [7] [7] Yang M, Zhang L, Feng X. Fisher discrimination dictionary learning for sparse representation. In: Proceedings of 2011 IEEE International Conference on Computer Vision(ICCV). Barcelona, Spain: IEEE, 2011. 543-550
    [8] [8] He X F, Niyogi P. Locality preserving projections. Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2003. 152-160
    [9] Chen Si-Bao, Zhao Ling, Luo Bin. Dictionary learning via locality preserving for sparse representation. Journal of South China university of Technology (Natural Science Edition), 2014, 42(1): 142-146(陈思宝, 赵令, 罗斌. 局部保持的稀疏表示字典学习. 华南理工大学学报(自然科学版), 2014, 42(1): 142-146)
    [10] Scholkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 10(5): 1299-1319
    [11] Mike S, Ratsch G, Scholkopf B, Weston J, Muller R K. Fisher discriminant analysis with kernels. In: Proceedings of the 1999 IEEE Signal Processing Society Workshop. Madison, WI: IEEE, 1999. 41-48
    [12] Lu J W, Plataniotis K N, Venetsanopoulos A N. Face recognition using kernel direct discriminant analysis algorithms. IEEE Transactions on Neural Networks, 2003, 14(1): 117-126
    [13] Gao S, Tsang I, Chia L T. Sparse representation with kernels. IEEE Transactions on Image Processing, 2013, 22(2): 423-434
    [14] Zhou Y, Liu K, Carrillo R E. Kernel-based sparse representation for gesture recognition. Pattern Recognition, 2013, 46(12): 3208-3222
    [15] Yin J, Liu Z H, Jin Z, Yang W K. Kernel sparse representation based classification. Neurocomputing, 2012, 77(1): 120-128
    [16] He X F, Yan S C, Hu Y X, Niyogi P. Face recognition using laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340
    [17] Yang M, Zhang L, Yang J. Metaface learning for sparse representation based face recognition. In: Proceedings of the 17th IEEE International Conference on Image Processing. Hong Kong, China: IEEE, 2010. 1601-1604mm
    [18] Huang R B, Su C M, Lang F N, Du M H. Kernel discriminant locality preserving projections for human face recognition. Journal of Information and Computational Science, 2010, 7(4): 925-931mm
    [19] Wang Z Q, Qian X. Document classification algorithm using kernel LPP. In: Proceedings of 2009 International Conference on Computational Intelligence and Natural Computing. Wuhan, China: IEEE, 2009, 2: 100-102mm
    [20] Martinez A, Benavente R. The AR Face Database. The Ohio State University CVC Tech. Report No. 24, June, 1998
    [21] Naseem I, Togneri R, Bennamoun M. Linear regression for face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(11): 2106-2112mm
    [22] Zhang D, Yang M, Feng X. Sparse representation or collaborative representation: which helps face recognition? In: Proceedings of 2011 IEEE International Conference on Computer Vision (ICCV). Barcelona, Spain: IEEE, 2011. 471-478
  • 加载中
计量
  • 文章访问数:  1963
  • HTML全文浏览量:  111
  • PDF下载量:  969
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-09
  • 修回日期:  2014-04-10
  • 刊出日期:  2014-10-20

目录

    /

    返回文章
    返回