2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共享隐空间迁移SVM

董爱美 王士同

董爱美, 王士同. 共享隐空间迁移SVM. 自动化学报, 2014, 40(10): 2276-2287. doi: 10.3724/SP.J.1004.2014.02276
引用本文: 董爱美, 王士同. 共享隐空间迁移SVM. 自动化学报, 2014, 40(10): 2276-2287. doi: 10.3724/SP.J.1004.2014.02276
DONG Ai-Mei, WANG Shi-Tong. A Shared Latent Subspace Transfer Learning Algorithm Using SVM. ACTA AUTOMATICA SINICA, 2014, 40(10): 2276-2287. doi: 10.3724/SP.J.1004.2014.02276
Citation: DONG Ai-Mei, WANG Shi-Tong. A Shared Latent Subspace Transfer Learning Algorithm Using SVM. ACTA AUTOMATICA SINICA, 2014, 40(10): 2276-2287. doi: 10.3724/SP.J.1004.2014.02276

共享隐空间迁移SVM

doi: 10.3724/SP.J.1004.2014.02276
基金项目: 

国家自然科学基金(61170122, 61202311),江苏省自然科学基金(BK 2012552), 山东省高等学校科技计划项目(J14LN05) 资助

详细信息
    作者简介:

    王士同 江南大学数字媒体学院教授.主要研究方向为人工智能和机器学习.E-mail: wxwangst@yahoo.com.cn

A Shared Latent Subspace Transfer Learning Algorithm Using SVM

Funds: 

Supported by National Natural Science Foundation of China (61170122, 61202311), Natural Science Foundation of Jiangsu Province (BK2012552), and the Project of Shandong Province Higher Educational Science and Technology Program (J14LN05)

  • 摘要: 在机器学习中,迁移学习被证明能有效使用一个领域信息提高另一个领域中受训模型的分类精度. 迁移学习总是假设相关领域间共享某些隐含因素,但在当前的迁移学习方法中,该部分隐含因素依然未得到充分 探讨.本研究引入低维共享隐空间的迁移学习方法,基于经典支持向量机(Support vector machine, SVM)分类模型得到融入共享隐空间的迁移支持向量机,该模型较以往相关方法能更好地利用隐空间这一有效信息,从而提高所得分类器 的泛化性能.相关实验结果亦验证了所提方法的有效性.
  • [1] Evgeniou T, Micchelli C A, Pontil M. Learning multiple tasks with kernel methods. Journal of Machine Learning Research, 2005, 6(4): 615-637
    [2] [2] Duan L X, Tsang I W, Xu D. Domains transfer multiple kernel learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(3): 465-479
    [3] [3] Tu W T, Sun S L. A subject transfer framework for egg classification. Neurocomputing, 2012, 82: 109-116
    [4] [4] Pan S J, Yang Q. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359
    [5] [5] Ando R K, Zhang T. A framework for learning predictive structures from multiple tasks and unlabeled data. Journal Machine Learning Research, 2005, 6: 1817-1853
    [6] [6] Zheng V W, Pan J L, Yang Q, Pan J F. Transferring multi-device localization models using latent multi-task learning. In: Proceedings of the 23th International Conference on Artificial Intelligence. Chicago, USA: ACM, 2008. 1427-1432
    [7] [7] Pan S J, Kwok J T, Yang Q. Transfer learning via dimensionality reduction. In: Proceedings of the 23th International Conference on Artificial Intelligence. Chicago, USA: ACM 2008. 677-682
    [8] [8] Si S, Tao D C, Geng B. Bregman divergence-based regularization for transfer subspace learning. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(7): 929-942
    [9] [9] Shao M, Castillo C, Gu Z H, Fu Y. Low-rank transfer subspace learning. In: Proceedings of the 12th International Conference on Data Mining. Brussels, Belgium: IEEE 2012. 1104-1109
    [10] Yang S Z, Lin M, Hou C P, Zhang C S, Wu Y. A general framework for transfer sparse subspace learning. Neural Computing and Applications, 2012, 21(7): 1801-1817
    [11] Gupta S K, Phung D, Adams B, Adams B, Venkatesh S. Regularized nonnegative shared subspace learning. Data mining and knowledge discovery, 2013, 26(1): 57-97
    [12] Vapnik V. Statistical Learning Theory. New Jersey: Wiley-Interscience Press, 1998.
    [13] Domeniconi C, Gunopulos D, Ma S, Yan B J, Al-Razgan M, Papadopoulos D. Locally adaptive metrics for custering high dimensional data. Data Mining and Knowledge Discovery, 2007, 14(1): 63-97
    [14] Wu K L, Yu J, Yang M S. A novel fuzzy clustering algorithm based on a fuzzy scatter matrix with optimality tests. Pattern Recognition Letters, 2005, 26(5): 639-652
    [15] Deng Z H, Choi K S, Chung F L, Wang S T. Enhanced soft subspace clustering integrating within-cluster and between-cluster information. Pattern Recognition, 2010, 43(3): 767- 781
    [16] Yu J, Cheng Q S, Huang H K. Analysis of the weighting exponent in the FCM. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, 34(1): 634 -639
    [17] Yang S, Yan S C, Zhang C, Tang X O. Bilinear analysis for kernel selection and nonlinear feature extraction. IEEE Transactions on Neural Networks, 2007, 18(5): 1442-1452
    [18] Jiang Yi-Zhang, Deng Zhao-Hong, Wang Shi-Tong. Mamdani-Larsen type transfer learning fuzzy system. Acta Automatica Sinica, 2012, 38(9): 1393-1409(蒋亦樟, 邓赵红, 王士同. ML型迁移学习模糊系统. 自动化学报, 2012, 38(9): 1393-1409)
    [19] Golub G H, Van Loan C F. Matrix Computations (3rd Edition). Baltimore: The Johns Hopkins University Press, 1996.
    [20] Gao J, Fan W, Jiang J, Han J W. Knowledge transfer via multiple model local structure mapping. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2008. 283-291
    [21] Wu P, Dietterich T G. Improving SVM accuracy by training on auxiliary data sources. In: Proceedings of the 21st International Conference on Machine Learning. New York, USA: ACM, 2004. 110-117
    [22] Quanz B, Huan J. Large margin transductive transfer learning. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management. New York, USA: ACM, 2009. 1327-1336
    [23] Ji S W, Tang L, Yu S P, Ye J P. A shared-subspace learning framework for multi-label classification. ACM Transactions on Knowledge Discovery From Data, 2010, 4(2), Article No.8, DOI: 10.1145/1754428.1754431
    [24] Tao Jian-Wen, Wang Shi-Tong. Kernel distribution consistency based local domain adaptation learning. Acta Automatica Sinica, 2013, 39(8): 1295-1309 (陶剑文, 王士同. 核分布一致局部领域适应学习. 自动化学报, 2013, 39(8): 1295-1309)
    [25] Dai W Y, Yang Q, Xue G R, Yu Y. Boosting for transfer learning. In: Proceedings of the 24th International Conference on Machine Learning. New York, USA: ACM, 2007. 193-200
    [26] Gu Xin, Wang Shi-Tong, Xu Min. A new cross-multidomain classification algorithm and its fast version for large datasets. Acta Automatica Sinica, 2014, 40(3): 531-547(顾鑫, 王士同, 许敏. 基于多源的跨领域数据分类快速新算法. 自动化学报, 2014, 40(3): 531-547)
    [27] Tao Jian-Wen, Wang Shi-Tong. Domain adaptation kernel support vector machine. Acta Automatica Sinica, 2012, 38(5): 797-811(陶剑文, 王士同. 领域适应核支持向量机. 自动化学报, 2012, 38(5): 797-811)
  • 加载中
计量
  • 文章访问数:  1723
  • HTML全文浏览量:  63
  • PDF下载量:  1493
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-07
  • 修回日期:  2014-04-10
  • 刊出日期:  2014-10-20

目录

    /

    返回文章
    返回