[1]
|
Yang Bo, Liu Da-You. Complex network clustering algorithms. Journal of Software, 2009, 20(1): 54-66(杨博, 刘大有. 复杂网络聚类方法. 软件学报, 2009, 20(1): 54-66)
|
[2]
|
[2] Girvan M, Newman M E J. Community structure in social and biological networks. Proceedings of National Academy of Science of the United States of America, 2002, 9(12): 7921-7826
|
[3]
|
[3] Newman M E J. Fast algorithm for detecting community structure in networks. Physical Review E, 2004, 69(6): 066133
|
[4]
|
[4] Palla G, Derenyi I, Farkas I, Vicsde T. Uncovering the overlapping community structures of complex networks in nature and societ. Nature, 2005, 435(7043): 814-818
|
[5]
|
[5] Shen H W, Cheng X Q, Cai K, Hu M B. Detect overlapping and hierarchical community structure in networks. Physica A, 2009, 388(8): 1706-1712
|
[6]
|
[6] Lancichinetti A, Fortunato S, Kertesz J. Detecting the overlapping and hierarchical community structure in complex networks. New Journal of Physics, 2009, 11(3): 033015
|
[7]
|
[7] Gregory S. Finding overlapping communities in networks by label propagation. New Journal of Physics, 2010, 12(10): 103018
|
[8]
|
[8] Jin D, Yang B, Baquero C, Liu D Y, He D X, Liu J. Markov random walk under constraint for discovering overlapping communities in complex networks. Journal of Statistical Mechanics: Theory and Experiment, 2011, P05031
|
[9]
|
Jin Di, Yang Bo, Liu Jie, Liu Da-You, He Dong-Xiao. Ant colony optimization based on random walk for community detection in complex networks. Journal of Software, 2012, 23(3): 451-464(金弟, 杨博, 刘杰, 刘大有, 何东晓. 复杂网络簇结构探测-基于随机游走的蚁群算法. 软件学报, 2012,23(3): 451-464)
|
[10]
|
Gan Wen-Yan, He Nan, Li De-Yi. Community discovery method in networks based on topological potential. Journal of Software, 2009, 20(8): 2241-2254(淦文燕, 赫南, 李德毅. 一种基于拓扑势的网络社区发现方法. 软件学报, 2009, 20(8): 2241-2254)
|
[11]
|
Jin Di, Liu Jie, Yang Bo, He Dong-Xiao, Liu Da-You. Genetic algorithm with local search for community detection in large-scale complex networks. Acta Automatica Sinica, 2011, 37(7): 873-882(金弟, 刘杰, 杨博, 何东晓, 刘大有. 局部搜索与遗传算法结合的大规模复杂网络社区探测. 自动化学报, 2011, 37(7): 873-882)
|
[12]
|
He Dong-Xiao, Zhou Xu, Wang Zuo, Zhou Chun-Guang, Wang Zhe, Jin Di. Community mining in complex networks-clustering combination based genetic algorithm. Acta Automatica Sinica, 2010, 36(8): 1160-1170(何东晓, 周栩, 王佐, 周春光, 王喆, 金弟. 复杂网络社区挖掘-基于聚类融合的遗传算法. 自动化学报, 2010,36(8): 1160-1170)
|
[13]
|
Yang Bo, Liu Jie, Liu Da-You. A random network ensemble model based generalized network community mining algorithm. Acta Automatica Sinica, 2012, 38(5): 812-822(杨博, 刘杰, 刘大有. 基于随机网络集成模型的广义网络社区挖掘算法. 自动化学报, 2012, 38(5): 812-822)
|
[14]
|
Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation. Journal of Machine Learning Research, 2003, 3: 993-1022
|
[15]
|
Zhang H Z, Qiu B J, Giles C L, Foley H C, Yen J. An LDA-based community structure discovery approach for large-scale social networks. In: Proceedings of the 2007 IEEE Intelligence and Security Informatics. New Brunswick, NJ: IEEE, 2007. 200-207
|
[16]
|
Kemp C, Tenenbaum J B, Griffiths T L, Yamada Y, Ueda N. Learning systems of concepts with an infinite relational model. In: Proceedings of the 21st National Conference on Artificial Intelligence. Boston, MA: AAAI Press, 2006. 381-388
|
[17]
|
Henderson K, Eliassi R T. Applying latent Dirichlet allocation to group discovery in large graphs. In: Proceedings of the 2009 ACM symposium on Applied Computing. New York: ACM, 2009. 1456-1461
|
[18]
|
Henderson K, Eliassi-Rad T, Papadimitriou S, Faloutsos C. HCDF: A hybrid community discovery framework. In: Proceedings of the 2010 SIAM International Conference on Data Mining. Columbus, OH: SIAM, 2010. 754-765
|
[19]
|
Zhang H, Giles C L, Foley H C, Yen J. Probabilistic community discovery using hierarchical latent Gaussian mixture model. In: Proceedings of the 22nd National Conference on Artificial Intelligence. Boston, MA: AAAI Press, 2007, 7: 663-668
|
[20]
|
Zhang H Z, Li W, Wang X R, Giles C L. HSN-PAM: Finding hierarchical probabilistic 2007 groups from large-scale networks. In: Proceedings of the 2007 IEEE International Conference on Data Mining Workshops. Omaha, NE: IEEE, 2007. 27-32
|
[21]
|
Steyvers M, Smyth P, Rosen-Zvi M, Groffiths T. Probabilistic author-topic models for information discovery. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2004. 306-315
|
[22]
|
McCallum A, Corrada-Emmanuel A, Wang X R. Topic and role discovery in social networks. Computer Science Department Faculty Publication Series, 2005. 3
|
[23]
|
McCallum A, Wang X, Corrada-Emmanuel A. Topic and role discovery in social networks with experiments on Enron and academic email. Journal of Artificial Intelligence Research, 2007, 30(1): 249-272
|
[24]
|
Zhou D, Manavoglu E, Li J, Lee C L, Zha H Y. Probabilistic models for discovering e-communities. In: Proceedings of the 15th International Conference on World Wide Web. New York: ACM, 2006. 173-182
|
[25]
|
Cha Y, Cho J. Social-network analysis using topic models. In: Proceedings of the 35th international ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2012. 565-574
|
[26]
|
Wang X, Mohanty N, McCallum A. Group and topic discovery from relations and text. In: Proceedings of the 3rd International Workshop on Link Discovery. New York: ACM, 2005. 28-35
|
[27]
|
Pathak N, DeLong C, Banerjee A, Erickson K. Social topic models for community extraction. In: Proceedings of the 2nd SNA-KDD Workshop. Las Vegas, Nevada, USA: ACM, 2008. 8
|
[28]
|
Mei Q, Cai D, Zhang D, Zhai C X. Topic modeling with network regularization. In: Proceedings of the 17th International Conference on World Wide Web. New York: ACM, 2008. 101-110
|
[29]
|
Sachan M, Contractor D, Faruquie T, Subramaniam V. Probabilistic model for discovering topic based communities in social networks. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management. New York: ACM, 2011. 2349-2352
|
[30]
|
Sachan M, Contractor D, Faruquie T, Subramaniam V. Using content and interactions for discovering communities in social networks. In: Proceedings of the 21st International Conference on World Wide Web. New York: ACM, 2012. 331-340
|
[31]
|
Yin Z J, Cao L L, Gu Q Q, Han J W. Latent community topic analysis: integration of community discovery with topic modeling. ACM Transactions on Intelligent Systems and Technology, 2012, 3(4): Article No. 63, DOI: 10.1145/2 337542.2337548
|
[32]
|
Zhang Y Z, Wang J Y, Wang Y, Zhou L Z. Parallel community detection on large networks with propinquity dynamics. In: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009. 997-1006
|
[33]
|
Lou H, Li S H, Zhao Y X. Detecting community structure using label propagation with weighted coherent neighborhood propinquity. Physica A: Statistical Mechanics and Its Applications, 2013, 392(14): 3095-3105
|
[34]
|
Zhu X J Ghahramani Z, Lafferty J. Semi-supervised learning using gaussian fields and harmonic functions. In: Proceedings of the 20th International Conference on Machine Learning (ICML-2003). Piscataway, N J: IEEE, 2003. 912-919
|
[35]
|
Xie J R, Szymanski B K, Liu X M. SLPA: Uncovering overlapping communities in social networks via a speaker-listener interaction dynamic process. In: Proceedings of the 11th IEEE International Conference of Data Mining Workshops. Washington, CD: IEEE, 2011. 344-349
|