[1]
|
Kadlec P, Gabrys B, Strandt S. Data-driven soft sensors in the process industry. Computer and Chemical Engineering, 2009, 33(4): 795-814
|
[2]
|
Wu Yao, Luo Xiong-Lin. Robustness analysis of Kalman filtering algorithm for multirate systems. Acta Automatica Sinca, 2012, 38(2): 156-174 (吴瑶, 罗雄麟. 多率Kalman滤波算法的鲁棒性分析. 自动化学报,38(2): 156-174)
|
[3]
|
[3] Wu Y, Luo X L. A novel calibration approach of soft sensor based on multirate data fusion technology. Journal of Process Control, 2010, 20(10): 1252-1260
|
[4]
|
[4] Lee D S, Lee M W, Woo S H, Kim Y J, Park J M. Nonlinear dynamic partial least squares modeling of a full-scale biological wastewater treatment plant. Process Biochemistry, 2006, 41(9): 2050-2057
|
[5]
|
[5] Peng H, Ozaki T, Toyoda Y, Shioya H, Nakano K, Haggan-Ozaki V, Mori M. RBF-ARX model-based nonlinear system modeling and predictive control with application to a NOx decomposition process. Control Engineering Practice, 2004, 12(1): 191-203
|
[6]
|
Cao Peng-Fei, Luo Xiong-Lin. Modeling of soft sensor for chemical process. CIESC Journal, 2013, 64(3): 788-800 (曹鹏飞, 罗雄麟. 化工过程软测量建模方法研究进展. 化工学报, 2013, 64(3): 788-800)
|
[7]
|
[7] Galicia Hector J, He Q P, Wang J. A reduced order soft sensor approach and its application to a continuous digester. Journal of Process Control, 2011, 21(4): 489-500
|
[8]
|
[8] Pan T H, Wong D S H, Jang S S. Development of a novel soft sensor using a local model network with an adaptive subtractive clustering approach. Industrial Engineering Chemistry Research, 2010, 49(10): 4738-4747
|
[9]
|
[9] Luo Jian-Xu, Shao Hui-He. Developing dynamic soft sensors using multiple neural networks. Journal of Chemical Industry and Engineering, 2003, 54(12): 1770-1773
|
[10]
|
Domlan E, Huang B, Xu F W, Espejo A. A decoupled multiple model approach for soft sensors design. Control Engineering Practice, 2011, 19(2): 126-134
|
[11]
|
Hong B S, Fan L T, Schlup J R. Monitoring the process of curing of epoxy/graphite fiber composites with a recurrent neural network as a soft sensor. Artificial Intelligence, 1998, 11(2): 293-306
|
[12]
|
Dai X Z, Wang W C, Ding Y H, Sun Z Y. ''Assumed inherent sensor'' inversion based ANN dynamic soft-sensing method and its application in erythromycin fermentation process. Computers Chemical Engineering, 2006, 30(8): 1203-1225
|
[13]
|
Ma Yong, Huang De-Xian, Jin Yi-Hui. Discussion about dynamic soft-sensing modeling. Journal of Chemical Industry and Engineering, 2005, 56(8): 1516-1519 (马勇, 黄德先, 金以慧. 动态软测量建模方法初探. 化工学报, 2005, 56(8): 1516-1519)
|
[14]
|
Wu J F, He X R, Chen B Z. Back-propagation neural network model of dynamic system and its application. Journal of Chemical Industry and Engineering, 2000, 51(3): 378-382
|
[15]
|
Gmez J C, Baeyens E. Identification of block-oriented nonlinear systems using orthonormal. Journal of Process Control, 2004, 14(6): 685-697
|
[16]
|
Figueroa J L, Biagiola S I, Agamennoni O E. An approach for identification of uncertain Wiener systems. Mathematical and Computer Modelling, 2008, 48(1-2): 305-315
|
[17]
|
Kozek M, SinanovićS. Identification of Wiener models using optimal local linear models. Simulation Modelling Practice and Theory, 2008, 16(8): 1055-1066
|
[18]
|
Pearson R K, Pottmann M. Gray-box identification of block-oriented nonlinear models. Journal of Process Control, 2000, 10(4): 301-315
|
[19]
|
Ding Feng, Xiao De-Yun, Ding Tao. Multi-innovation stochastic gradient identification method. Control Theory Applications, 2003, 20(6): 870-874 (丁锋, 萧德云, 丁韬. 多新息随机梯度辨识方法. 控制理论与应用, 2003, 20(6): 870-874)
|
[20]
|
Ding Feng, Yang Jia-Ben. Hierachical identification of large scale systems. Acta Automatica Sinca, 1999, 25(5): 647-654 (丁锋, 杨家本. 大系统的递阶辨识. 自动化学报, 1999, 25(5): 647-654)
|
[21]
|
Fang Chong-Zhi, Xiao De-Yun. Process Identification. Beijing: Tsinghua University Press, 2007. (方崇智, 萧德云. 过程辨识. 北京: 清华大学出版社, 2007.)
|
[22]
|
Eykhoff P. System Identification-Parameter and State Estimation. New York: John Wiley Sons, 1974.
|
[23]
|
Strejc V. Least squares parameter estimation. Automatica, 1980, 16(5): 535-550
|
[24]
|
Qin S J. Neural Networks for Intelligent Sensors and Control-Practical Issues and Some Solutions. New York: Academic Press, 1996.
|
[25]
|
Principe J C, Euliano N R, Lefebvre W C. Neural and Adaptive Systems. New York: Wiley, 2000.
|
[26]
|
Cervantes A L, Agamennoni O E, Figueroa J L. A nonlinear model predictive control system based on Wiener piecewise linear models. Journal of Process Control, 2003, 13(7): 655-666
|
[27]
|
Ttterman S, Toivonen H T. Support vector method for identification of Wiener models. Journal of Process Control, 2009, 19(7): 1174-1181
|
[28]
|
Ding Feng, Ding Tao, Yang Jia-Ben. Xu Yong-Mao. Convergence of forgetting gradient estimation algorithm for time-varying parameters. Acta Automatica Sinca, 2002, 28(6): 962-968 (丁锋, 丁韬, 杨家本, 徐用懋. 时变参数遗忘梯度估计算法的收敛性. 自动化学报, 2002, 28(6): 962-968)
|
[29]
|
Ljung L. Consistency of the least-squares identification method. IEEE Transcations on Automatic Control, 1976, 21(5): 779-781
|
[30]
|
Ding Feng, Yang Jia-Ben. Remarks on martingale hyperconvergence theory and the convergence analysis of the forgetting factor least squares algorithms. Control Theory and Applications, 1999, 16(4): 569-572 (丁锋, 杨家本. 关于鞅超收敛定理与遗忘因子最小二乘算法的收敛性分析. 控制理论与应用, 1999, 16(4): 569-572)
|
[31]
|
Li Juan, Cui Wen-Quan. Extension of Cauchy-Schwarz inequality. College Mathematics, 2006, 22(6): 144-147 (李娟, 崔文泉. Cauchy-Schwarz 不等式的推广. 大学数学, 2006,22(6): 144-147)
|