[1]
|
Takigawa T, Kudo M, Toyama T. Performance analysis of minimum l1-norm solutions for underdetermined source separation. IEEE Transaction on Signal Processing, 2004, 52(3): 582-591
|
[2]
|
[2] Kim S J, Koh K, Lustig M, Boyd S, Gorinevsky D. An interior-point method for large-scale l1-regularized least squares. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 606-617
|
[3]
|
[3] Figueiredo M, Nowak R, Wright S. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597
|
[4]
|
[4] Tropp J A. Greed is good: algorithmic results for sparse approximation. IEEE Transaction on Information Theory, 2004, 50(10): 2231-2242
|
[5]
|
[5] Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666
|
[6]
|
[6] Blumensath T, Davies M E. Iterative hard thresholding for compressed sensing. Applied and Computational Harmonic Analysis, 2009, 27(3): 265-274
|
[7]
|
[7] Hosein M, Massoud B Z, Christian J. A fast approach for overcomplete sparse decomposition based on smoothed l0 norm. IEEE Transaction on Signal Processing, 2009, 57(1): 289-301
|
[8]
|
[8] Blumensath T, Davies M E. Normalized iterative hard thresholding: guaranteed stability and performance. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 298-309
|
[9]
|
Wang Jun-Hua, Huang Zhi-Tao, Zhou Yi-Yu, Wang Feng-Hua. Robust sparse recovery based on approximate l0 norm. Chinese Journal of Electronics, 2012, 40(5): 1185-1189(王军华, 黄知涛, 周一宇, 王丰华. 基于近似l0范数的稳健稀疏重构算法. 电子学报, 2012, 40(5): 1185-1189)
|
[10]
|
Wu F Y, Tong F. Gradient optimization p-norm-like constraint LMS algorithm for sparse system estimation. Signal Processing, 2013, 93(4): 967-971
|
[11]
|
Wu F Y, Tong F. Non-uniform norm constraint LMS algorithm for sparse system identification. IEEE Communication Letters, 2013, 17(2): 385-388
|
[12]
|
Jin J, Gu Y, Mei S. A stochastic gradient approach on compressive sensing signal reconstruction based on adaptive filtering framework. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 409-420
|
[13]
|
Shi K, Shi P. Adaptive sparse Volterra system identification with l0-norm penalty. Signal Processing, 2011, 91(10): 2432-2436
|
[14]
|
Palais R S. A simple proof of the Banach contraction principle. Journal of Fixed Point Theory and Applications, 2007, 2(2): 221-223
|
[15]
|
Garg R, Khandekar R. Gradient descent with sparsification: an iterative algorithm for sparse recovery with restricted isometry property. In: Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009. 337-344
|
[16]
|
Stojanovic M. Retrofocusing techniques for high rate acoustic communications. The Journal of the Acoustical Society of America, 2005, 117(3): 1173-1185
|
[17]
|
Zhang Cheng, Yang Hai-Rong, Wei Sui. Compressive sensing based on deterministic sparse Toeplitz measurement matrices with random pitch. Acta Automatica Sinica, 2012, 38(8): 1362-1369(张成, 杨海蓉, 韦穗. 基于随机间距稀疏Teoplitz测量矩阵的压缩传感. 自动化学报, 2012, 38(8): 1362-1369)
|
[18]
|
Li Shu-Tao, Wei Dan. A survey on compressive sensing. Acta Automatica Sinica, 2009, 35(11): 1369-1377(李树涛, 魏丹. 压缩传感综述. 自动化学报, 2009, 35(11): 1369-1377)
|
[19]
|
Liu Fang, Wu Jiao, Yang Shu-Yuan, Jiao Li-Cheng. Research advances on structured compressive sensing. Acta Automatica Sinica, 2013, 39(12): 1980-1995 (刘芳, 武娇, 杨淑媛, 焦李成. 结构化压缩感知研究进展. 自动化学报, 2013, 39(12): 1980-1995)
|
[20]
|
Li W C, Preisig J C. Estimation of rapidly time-varying sparse channels. IEEE Journal of Oceanic Engineering, 2007, 32(4): 927-939
|