2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于似零范数和混合优化的压缩感知信号快速重构算法

伍飞云 周跃海 童峰

伍飞云, 周跃海, 童峰. 基于似零范数和混合优化的压缩感知信号快速重构算法. 自动化学报, 2014, 40(10): 2145-2150. doi: 10.3724/SP.J.1004.2014.02145
引用本文: 伍飞云, 周跃海, 童峰. 基于似零范数和混合优化的压缩感知信号快速重构算法. 自动化学报, 2014, 40(10): 2145-2150. doi: 10.3724/SP.J.1004.2014.02145
WU Fei-Yun, ZHOU Yue-Hai, TONG Feng. A Fast Sparse Signal Recovery Algorithm Based on Approximate l0 Norm and Hybrid Optimization. ACTA AUTOMATICA SINICA, 2014, 40(10): 2145-2150. doi: 10.3724/SP.J.1004.2014.02145
Citation: WU Fei-Yun, ZHOU Yue-Hai, TONG Feng. A Fast Sparse Signal Recovery Algorithm Based on Approximate l0 Norm and Hybrid Optimization. ACTA AUTOMATICA SINICA, 2014, 40(10): 2145-2150. doi: 10.3724/SP.J.1004.2014.02145

基于似零范数和混合优化的压缩感知信号快速重构算法

doi: 10.3724/SP.J.1004.2014.02145
基金项目: 

国家自然科学基金(11274259), 教育部高等学校博士点专项基金(20120121110030) 资助

详细信息
    作者简介:

    伍飞云 厦门大学海洋与地球学院博士研究生. 主要研究方向为信号处理, 水声通信. E-mail: wfyfly@126.com

A Fast Sparse Signal Recovery Algorithm Based on Approximate l0 Norm and Hybrid Optimization

Funds: 

Supported by National Natural Science Foundation of China (11274259), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20120121110030)

  • 摘要: 欠定系统(又称超完备系统)的稀疏信号恢复在压缩感知、源信号分离和信号采集等领域中被广泛研究. 目前这类问题主要采用l1范数约束结合线性规划优化或贪婪算法进行求解, 但这些方法存在收敛速度慢、 恢复精度不高等缺陷. 提出一种快速恢复稀疏信号的算法, 该算法采用一种新的近似l0范数代替l1范数构造代价函数, 并融合牛顿法和最陡梯度法推导出寻优迭代式,以获得似零范数代价函数的最优解. 仿真实验和真实数据实验结果表明, 与经典算法相比, 该算法在能提供相同精度、甚至更好精度的条件下, 收敛速度更快.
  • [1] Takigawa T, Kudo M, Toyama T. Performance analysis of minimum l1-norm solutions for underdetermined source separation. IEEE Transaction on Signal Processing, 2004, 52(3): 582-591
    [2] [2] Kim S J, Koh K, Lustig M, Boyd S, Gorinevsky D. An interior-point method for large-scale l1-regularized least squares. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 606-617
    [3] [3] Figueiredo M, Nowak R, Wright S. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597
    [4] [4] Tropp J A. Greed is good: algorithmic results for sparse approximation. IEEE Transaction on Information Theory, 2004, 50(10): 2231-2242
    [5] [5] Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666
    [6] [6] Blumensath T, Davies M E. Iterative hard thresholding for compressed sensing. Applied and Computational Harmonic Analysis, 2009, 27(3): 265-274
    [7] [7] Hosein M, Massoud B Z, Christian J. A fast approach for overcomplete sparse decomposition based on smoothed l0 norm. IEEE Transaction on Signal Processing, 2009, 57(1): 289-301
    [8] [8] Blumensath T, Davies M E. Normalized iterative hard thresholding: guaranteed stability and performance. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 298-309
    [9] Wang Jun-Hua, Huang Zhi-Tao, Zhou Yi-Yu, Wang Feng-Hua. Robust sparse recovery based on approximate l0 norm. Chinese Journal of Electronics, 2012, 40(5): 1185-1189(王军华, 黄知涛, 周一宇, 王丰华. 基于近似l0范数的稳健稀疏重构算法. 电子学报, 2012, 40(5): 1185-1189)
    [10] Wu F Y, Tong F. Gradient optimization p-norm-like constraint LMS algorithm for sparse system estimation. Signal Processing, 2013, 93(4): 967-971
    [11] Wu F Y, Tong F. Non-uniform norm constraint LMS algorithm for sparse system identification. IEEE Communication Letters, 2013, 17(2): 385-388
    [12] Jin J, Gu Y, Mei S. A stochastic gradient approach on compressive sensing signal reconstruction based on adaptive filtering framework. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 409-420
    [13] Shi K, Shi P. Adaptive sparse Volterra system identification with l0-norm penalty. Signal Processing, 2011, 91(10): 2432-2436
    [14] Palais R S. A simple proof of the Banach contraction principle. Journal of Fixed Point Theory and Applications, 2007, 2(2): 221-223
    [15] Garg R, Khandekar R. Gradient descent with sparsification: an iterative algorithm for sparse recovery with restricted isometry property. In: Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009. 337-344
    [16] Stojanovic M. Retrofocusing techniques for high rate acoustic communications. The Journal of the Acoustical Society of America, 2005, 117(3): 1173-1185
    [17] Zhang Cheng, Yang Hai-Rong, Wei Sui. Compressive sensing based on deterministic sparse Toeplitz measurement matrices with random pitch. Acta Automatica Sinica, 2012, 38(8): 1362-1369(张成, 杨海蓉, 韦穗. 基于随机间距稀疏Teoplitz测量矩阵的压缩传感. 自动化学报, 2012, 38(8): 1362-1369)
    [18] Li Shu-Tao, Wei Dan. A survey on compressive sensing. Acta Automatica Sinica, 2009, 35(11): 1369-1377(李树涛, 魏丹. 压缩传感综述. 自动化学报, 2009, 35(11): 1369-1377)
    [19] Liu Fang, Wu Jiao, Yang Shu-Yuan, Jiao Li-Cheng. Research advances on structured compressive sensing. Acta Automatica Sinica, 2013, 39(12): 1980-1995 (刘芳, 武娇, 杨淑媛, 焦李成. 结构化压缩感知研究进展. 自动化学报, 2013, 39(12): 1980-1995)
    [20] Li W C, Preisig J C. Estimation of rapidly time-varying sparse channels. IEEE Journal of Oceanic Engineering, 2007, 32(4): 927-939
  • 加载中
计量
  • 文章访问数:  1728
  • HTML全文浏览量:  116
  • PDF下载量:  1103
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-10
  • 修回日期:  2014-05-21
  • 刊出日期:  2014-10-20

目录

    /

    返回文章
    返回