2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

提高案例推理分类器的可靠性研究

赵辉 严爱军 王普

赵辉, 严爱军, 王普. 提高案例推理分类器的可靠性研究. 自动化学报, 2014, 40(9): 2029-2036. doi: 10.3724/SP.J.1004.2014.02029
引用本文: 赵辉, 严爱军, 王普. 提高案例推理分类器的可靠性研究. 自动化学报, 2014, 40(9): 2029-2036. doi: 10.3724/SP.J.1004.2014.02029
ZHAO Hui, YAN Ai-Jun, WANG Pu. On Improving Reliability of Case-based Reasoning Classifier. ACTA AUTOMATICA SINICA, 2014, 40(9): 2029-2036. doi: 10.3724/SP.J.1004.2014.02029
Citation: ZHAO Hui, YAN Ai-Jun, WANG Pu. On Improving Reliability of Case-based Reasoning Classifier. ACTA AUTOMATICA SINICA, 2014, 40(9): 2029-2036. doi: 10.3724/SP.J.1004.2014.02029

提高案例推理分类器的可靠性研究

doi: 10.3724/SP.J.1004.2014.02029
基金项目: 

国家自然科学基金(61374143)资助

详细信息
    作者简介:

    赵辉 北京工业大学博士研究生.主要研究方向为人工智能,机器学习及其应用.E-mail:taiyuanjifeng2006@126.com

    通讯作者:

    严爱军 北京工业大学电子信息与控制工程学院副教授.主要研究方向为人工智能,过程建模与优化控制.本文通信作者.E-mail:yanaijun@bjut.edu.cn

On Improving Reliability of Case-based Reasoning Classifier

Funds: 

Supported by National Natural Science Foundation of China (61374143)

  • 摘要: 针对案例推理(Case-based reasoning,CBR)分类器的可靠性问题,本文提出一种改进的案例检索和案例重用方法. 首先在案例检索环节应用注水原理对属性权重进行优化分配,利用每个属性数据的标准差和均值构造拉格朗日函数求得属性权重,并设定重要度阈值指导属性约简;其次在案例重用环节引入基于可信度的重用策略,通过计算目标案例分属于各个类别的可信度大小来确定当前案例的分类结果. 最后通过实验对比,表明本文方法能有效提高分类精度和效率,分类器的可靠性得以保障.
  • [1] Schank R C. Dynamic Memory: A Theory of Reminding and Learning in Computers and People, New York: Cambridge University Press, 1982.
    [2] Aamodt A, Plaza E. Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Communications, 1994, 7(1): 39-59
    [3] Qian Z, Gao W, Wang F, Yan Z. A case-based reasoning approach to power transformer fault diagnosis using dissolved gas analysis data. European Transactions on Electrical Power, 2009, 19(3): 518-530
    [4] Liang Z Q. Design of automatic question answering system base on CBR. Procedia Engineering, 2012, 29: 981-985
    [5] Lejri O, Tagina M. A case-based reasoning reconfiguration decision support system. International Review on Computers and Software, 2012, 7(4): 1556-1562
    [6] Pla A, López B, Gay Po, Pous C. eXiT*CBR.v2: distributed case-based reasoning tool for medical prognosis. Decision Support Systems, 2013, 54(3): 1499-1510
    [7] Rezvan M T, Zeinal H A, Shalbafzadeh A. Case-based reasoning for classification in the mixed data sets employing the compound distance methods. Engineering Applications of Artificial Intelligence, 2013, 26(9): 2001-2009
    [8] Han Y H, Kunwoo L. A case-based framework for reuse of previous design concepts in conceptual synthesis of mechanisms. Computers in Industry, 2006, 57(4): 305-318
    [9] Xu X, Wang K, Ma W M, Lin J. Improving the reliability of case-based reasoning systems. International Journal of Computational Intelligence Systems, 2010, 3(3): 256-265
    [10] Aleven V. Using background knowledge in case-based legal reasoning: a computational model and an intelligent learning environment. Artificial Intelligence, 2003, 150(1-2): 183-237
    [11] Yan W, Li G X, Wei H L. The study of hybrid fuzzy CBR technique and using in engine radiator design system. Advanced Institute of Convergence Information Technology, 2012, 20(4): 658-666
    [12] Chang P C, Fan C Y, Dzan W Y. A CBR-based fuzzy decision tree approach for database classification. Expert Systems with Applications, 2010, 37(1): 214-225
    [13] Reguera Acevedo P, Fuertes Martinez J J, Dominguez Gonzalez M, Garcia Valencia R. Case-based reasoning and system identification for control engineering learning. IEEE Transactions on Education, 2008, 51(2): 271-281
    [14] Salamó M, López Sánchez M. Adaptive case-based reasoning using retention and forgetting strategies. Knowledge-Based Systems, 2011, 24(2): 230-247
    [15] Chattopadhyay S, Banerjee S, Fethi A, Acharya U R. A case-based reasoning system for complex medical diagnosis. Expert Systems, 2013, 30(1): 12-20
    [16] Kim M, Lee S, Woo S, Shin D H. Approximate cost estimating model for river facility construction based on case-based reasoning with genetic algorithms. KSCE Journal of Civil Engineering, 2012, 16(3): 283-292
    [17] Jiang Y J, Chen J, Ruan X Y. Fuzzy similarity-based rough set method for case-based reasoning and its application in tool selection. International Journal of Machine Tools and Manufacture, 2006, 46(2): 107-113
    [18] Pian Jin-Xiang, Chai Tian-You, Li Jie-Jia. Application of case-based reasoning and iterative learning to laminar cooling process control. Acta Automatica Sinica, 2012, 38(12): 2032-2037(片锦香, 柴天佑, 李界家. 案例推理及迭代学习在层流冷却控制中的应用. 自动化学报, 2012, 38(12): 2032-2037)
    [19] Costa C A, Luciano M A, Lima C P, Young R I M. Assessment of a product range model concept to support design reuse using rule based systems and case based reasoning. Advanced Engineering Informatics, 2012, 26(2): 292-305
    [20] Guo Lei, Chen Jin, Zhu Yi, Zhao Fa-Gang. Feature reduction method based on wavelet kernel-PCA. Journal of Vibration Engineering, 2009, 22(3): 287-291(郭磊, 陈进, 朱义, 赵发刚. 基于小波函数的核主元特征约简方法研究. 振动工程学报, 2009, 22(3): 287-291)
    [21] Xiao Di, Hu Shou-Song. Real rough set theory and attribute reduction. Acta Automatica Sinica, 2007, 33(3): 253-258(肖迪, 胡寿松. 实域粗糙集理论及属性约简. 自动化学报, 2007, 33(3): 253-258)
    [22] Xu Yi, Li Long-Shu. Variable precision rough set model based on (α, λ) connection degree tolerance relation. Acta Automatica Sinica, 2011, 37(3): 303-308(徐怡, 李龙澍. 基于(α, λ)联系度容差关系的变精度粗糙集模型. 自动化学报, 2011, 37(3): 303-308)
    [23] Xu Dan-Lei, Du Lan, Liu Hong-Wei, Hong Ling, Li Yan-Bing. Joint feature selection and classification design based on variational relevance vector machine. Acta Automatica Sinica, 2011, 37(8): 932-943(徐丹蕾, 杜兰, 刘宏伟, 洪灵, 李彦兵. 一种基于变分相关向量机的特征选择和分类结合方法. 自动化学报, 2011, 37(8): 932-943)
    [24] Yu Y X, Wang G. Research on power allocation scheme based on water-filling algorithm in cooperative diversity system. Journal of Electronics and Information, 2012, 34(12): 2830-2836
    [25] Delany S J, Cunningham P, Doyle D, Zamolotskikh A. Generating estimates of classification confidence for a case-based spam filter. Lecture Notes in Computer Science, 2005, 3620: 177-190
  • 加载中
计量
  • 文章访问数:  1942
  • HTML全文浏览量:  36
  • PDF下载量:  1169
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-29
  • 修回日期:  2013-11-26
  • 刊出日期:  2014-09-20

目录

    /

    返回文章
    返回