[1]
|
Wei D H, Craig I K. Grinding mill circuits——a surver of control and economic concerns. International Journal of Mineral Processing, 2009, 90(1-4): 56-66
|
[2]
|
Lestage R, Pomerleau A, Hodouin D, Constrained real-time optimization of a grinding circuit using steady-state linear programming supervisory control. Powder Technology, 2002, 124(3): 254-263
|
[3]
|
Niemi A J, Tian L, Ylinen R. Model predictive control for grinding systems. Control Engineering Practice, 1997, 5(2): 271-278
|
[4]
|
Ramasamya M, Narayananb S S, Raoc Ch D P. Control of ball mill grinding circuit using model predictive control scheme. Journal of Process Control, 2005, 15(3): 273-283
|
[5]
|
Zhou P, Chai T Y. Grinding circuit control: a hierarchical approach using extended 2-DOF decoupling and model approximation. Powder Technology, 2011, 213(3): 14-26
|
[6]
|
Chen X S, Yang J, Li S H. Disturbance observer based multi-variable control of ball mill grinding circuits. Journal of Process Control, 2009, 19(7): 1205-1213
|
[7]
|
Zhou P, Dai W, Chai T Y. Multivariable disturbance observer based advanced feedback control design and its application to a grinding circuit. IEEE Transactions on Control Systems Technology, 2014, 22(4): 1474-1485
|
[8]
|
Zhao Da-Yong, Chai Tian-You. Fuzzy switching control for sump level interval and hydrocyclone pressure in regrinding process. Acta Automatica Sinica, 2013, 39(5): 556-564 (赵大勇, 柴天佑. 再磨过程泵池液位区间与给矿压力模糊切换控制. 自动化学报, 2013, 39(5): 556-564)
|
[9]
|
Dubé Y, Lanther R. Computer aided dynamic analysis and control design for grinding circuits. CIM Bulletin, 1987, 80(905): 65-70
|
[10]
|
Chen X S, Li Q, Fei S M. Supervisory expert control for ball mill grinding circuits. Expert Systems with Applications, 2008, 34(3): 1877-1885
|
[11]
|
Zhou P, Chai T Y, Sun J. Intelligence-based supervisory control for optimizing the operation of a DCS-controlled grinding system. IEEE Transactions on Control Systems Technology, 2013, 21(1): 162-175
|
[12]
|
Chai Tian-You, Ding Jin-Liang, Wang Hong, Su Chun-Yi. Hybrid intelligent optimal control method for operation of complex industrial processes. Acta Automatica Sinica, 2008, 34(5): 505-515 (柴天佑, 丁进良, 王宏, 苏春翌. 复杂工业过程运行的混合智能优化控制方法. 自动化学报, 2008, 34(5): 505-515)
|
[13]
|
Chai T Y. Optimal operational control for complex industrial processes. In: Proceedings of the 8th IFAC International Symposium on Advanced Control of Chemical Processes. Singapore: International Federation of Automatic Control, 2012. 722-731
|
[14]
|
Chai Tian-You. Operational optimization and feedback control for complex industrial processes. Acta Automatica Sinica, 2013, 39(11): 1744-1757 (柴天佑. 复杂工业过程运行优化与反馈控制. 自动化学报, 2013, 39(11): 1744-1757)
|
[15]
|
Si J, Wang Y T. Online learning control by association and reinforcement. IEEE Transactions on Neural Network, 2001, 12(2): 264-276
|
[16]
|
Lu C, Si J, Xie X R. Direct heuristic dynamic programming for damping oscillations in a large power system. IEEE Transactions on System, Man, and Cybernetics Part B: Cybernetics, 2008, 38(4): 1008-1013
|
[17]
|
Haykin S. Neural Networks: A Comprehensive Foundatio (2nd Edition). New Jersey: Prentice Hall, 1994.
|
[18]
|
Liu De-Rong, Li Hong-Liang, Wang Ding. Data-based self-learning optimal control: research progress and prospects. Acta Automatica Sinica, 2013, 39(11): 1858-1870 (刘德荣, 李宏亮, 王鼎. 基于数据的自学习优化控制: 研究进展与展望. 自动化学报, 2013, 39(11): 1858-1870)
|
[19]
|
Zhang Hua-Guang, Zhang Xin, Luo Yan-Hong, Yang Jun. An overview of research on adaptive dynamic programming. Acta Automatica Sinica, 2013, 39(4): 303-311 (张化光, 张欣, 罗艳红, 杨珺. 自适应动态规划综述. 自动化学报, 2013, 39(4): 303-311)
|
[20]
|
Liu D R, Wei Q L. Finite-approximation-error based optimal control approach for discrete-time nonlinear systems. IEEE Transactions on Cybernetics, 2013, 43(2): 779-789
|
[21]
|
Tie Ming, Fan Yu-Shun, Chai Tian-You. Distributed simulation platform for optimizing control of mineral grinding process. Journal of System Simulation, 2008, 20(15): 4000-4005 (铁鸣, 范玉顺, 柴天佑. 磨矿流程优化控制的分布式仿真平台. 系统仿真学报, 2008, 20(15): 4000-4005)
|