[1]
|
Chen Bing-Chen. Mathematical Models of Mineral Processing. Shenyang: Northeastern University Press, 1990. (陈炳辰. 选矿数学模型. 沈阳: 东北大学出版社, 1990.)
|
[2]
|
Chai T Y. Optimal operational control for complex industrial processes. In: Proceedings of the 8th IFAC Symposium on Advanced Control of Chemical Processes. Singapore: The International Federation of Automatic Control, 2012. 722-731
|
[3]
|
Chai Tian-You. Challenges of optimal control for plant-wide production processes in terms of control and optimization theories. Acta Automatica Sinica, 2009, 35(6): 641-649(柴天佑. 生产制造全流程优化控制对控制与优化理论方法的挑战. 自动化学报, 2009, 35(6): 641-649)
|
[4]
|
Zhou P, Chai T, Wang H. Intelligent optimal-setting control for grinding circuits of mineral processing process. IEEE Transactions on Automation Science and Engineering, 2009, 6(4): 730-743
|
[5]
|
Sbárbaro D. Dynamic Simulation and Model-based Control System Design for Comminution Circuits. London: Springer, 2010.
|
[6]
|
Schug B W, Nees M R, Gamarano T V. Process Simulation for Improved Plant Design through p&id Validation, Technical Report, Andritz Automation Inc., USA, 2012.
|
[7]
|
King R P. Modeling and Simulation of Mineral Processing Systems. Oxford: Butterworth-Heinemann, 2001.
|
[8]
|
Su Jun-Wei, Gu Zhao-Lin, Xu X Y. Advances of solution methods of population balance equation for disperse phase system. Scientia Sinica Chimica, 2010, 40(2): 144-160(苏军伟, 顾兆林, Xu X Y. 离散相系统群体平衡模型的求解算法. 中国科学-化学, 2010, 40(2): 144-160)
|
[9]
|
Mishra B K. Monte Carlo Method for the Analysis of Particle Breakage. London: Elsevier, 2007. 637-660
|
[10]
|
Gillespie D T. Stochastic simulation of chemical kinetics. Annual Review of Physical Chemistry, 2007, 58(1): 35-55
|
[11]
|
Khalili S, Lin Y, Armaou A, Matsoukas T. Constant number Monte Carlo simulation of population balances with multiple growth mechanisms. AIChE Journal, 2010, 56(12): 3137-3145
|
[12]
|
Mishra B K. Monte Carlo simulation of particle breakage process during grinding. Powder Technology, 2000, 110(3): 246-252ewpage
|
[13]
|
Lee K, Matsoukas T. Simultaneous coagulation and break-up using constant-N Monte Carlo. Powder Technology, 2000, 110(1-2): 82-89
|
[14]
|
Zhao Hai-Bo, Zheng Chu-Guang, Xu Ming-Hou. Multi-Monte Carlo method for simultaneous coagulation and breakage of nanoparticles. Proceedings of the Chinese Society for Electrical Engineering, 2005, 25(16): 96-101(赵海波, 郑楚光, 徐明厚. 用多重蒙特卡罗算法研究超细微颗粒物同时发生的凝并和破碎. 中国电机工程学报, 2005, 25(16): 96-101)
|
[15]
|
Kostoglou M. Handbook of Powder Technology. London: Elsevier, 2007. 793-835
|
[16]
|
Rajamani K, Pate W T, Kinneberg D J. Time-driven and event-driven Monte Carlo simulations of liquid-liquid dispersions: a comparison. Industrial and Engineering Chemistry Fundamentals, 1986, 25(4): 746-752
|
[17]
|
Dai Wei, Chai Tian-You. Data-driven optimal operational control of complex grinding processes. Acta Automatica Sinica, 2014, 40(9): 2005-2014 (代伟, 柴天佑. 数据驱动的复杂磨矿过程运行优化控制方法. 自动化学报, 2014, 40(9): 2005-2014)
|
[18]
|
Nageswararao K, Wiseman D M, Napier-Munn T J. Two empirical hydrocyclone models revisited. Minerals Engineering, 2004, 17(5): 671-687
|