[1]
|
Verbeek J J, Vlassis N, Krse B. Efficient greedy learning of Gaussian mixture models. Neural Computation, 2003, 15(2): 469-485
|
[2]
|
[2] Redner R A, Walker H F. Mixture densities, maximum likelihood, and the EM algorithm. Society for Industrial and Applied Mathematics Review, 1984, 26(2): 195-239
|
[3]
|
[3] Nguyen T M, Wu Q M J, Ahuja S. An extension of the standard mixture model for image segmentation. IEEE Transactions on Neural Networks, 2010, 21(8): 1326-1338
|
[4]
|
[4] Balarf M A, Ramli A R, Saripan M I, Mashohor S. Review of brain MRI image segmentation methods. Artificial Intelligence Review, 2010, 33(3): 261-274
|
[5]
|
[5] Skibbe H, Reisert M, Burkhardt H. Gaussian neighborhood descriptors for brain segmentation. In: Proceedings of the 2011 Machine Vision Applications. Nara, Japan: Nara Centennial Hall, 2011. 35-38
|
[6]
|
[6] Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(6): 721-741
|
[7]
|
[7] Besag J. On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society, 1986, 48(3): 259-302
|
[8]
|
[8] Diplaros A, Vlassis N, Gevers T. A spatially constrained generative model and an EM algorithm for image segmentation. Neural Networks, 2007, 18(3): 798-808
|
[9]
|
[9] Qian W, Titterington D M. Estimation of parameters in hidden Markov models. Philosophical Transactions of the Royal Society A: Mathematical, Physical And Engineering Sciences, 1991, 337(1647): 407-428
|
[10]
|
Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 2001, 20(1): 45-57
|
[11]
|
Sanjay-Gopal S, Hebert T J. Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm. IEEE Transactions on Image Processing, 1998, 7(7): 1014-1028
|
[12]
|
Yousefi S, Azmi R, Zahedi M. Brain tissue segmentation in MR images based on a hybrid of MRF and social algorithms. Medical Image Analysis, 2012, 16(4): 840-848
|
[13]
|
Wang Q. HMRF-EM-image: implementation of the hidden Markov random field model and its expectation-maximization algorithm. Computer Vision and Pattern Recognition, DOI: arXiv: 1207.3510, 2012
|
[14]
|
Roche A, Ribes D, Bach-Cuadra M, Kr
|
[15]
|
ger G. On the convergence of EM-like algorithms for image segmentation using Markov random fields. Medical Image Analysis, 2011, 16(6): 830-839
|
[16]
|
Bishop C M. Pattern Recognition and Machine Learning. Berlin: Springer-Verlag, 2006
|
[17]
|
Celeux G, Forbes F, Peyrard N. EM procedures using mean field-like approximations for Markov model-based image segmentation. Pattern Recognition, 2003, 36(1): 131-144
|
[18]
|
Besag J. Statistical analysis of non-lattice data. The Statistician, 1975, 24(3): 179-195
|
[19]
|
Efros A A, Leung T K. Texture synthesis by non-parametric sampling. In: Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra, Greece, 1999, 2: 1033-1038
|
[20]
|
Buades A, Coll B, Morel J M. A non-local algorithm for image denoising. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA: IEEE, 2005. 60-65
|
[21]
|
Wang Huan-Liang, Han Ji-Qing, Zheng Tie-Ran. Approximation of Kullback-leibler divergence between two Gaussian mixture distributions. Acta Automatica Sinica, 2008, 34(5): 529-534 (王欢良, 韩纪庆, 郑铁然. 高斯混合分布之间K-L散度的近似计算. 自动化学报, 2008, 34(5): 529-534)
|
[22]
|
Roweis S T, Saul L K, Hinton G E. Global coordination of local linear models. Advances in Neural Information Processing Systems, 2002, 14: 889-896
|
[23]
|
Verbeek J J, Vlassis N, Krse B J A. Self-organizing mixture models. Neurocomputing, 2005, 63: 99-123
|
[24]
|
Vovk U, Pernug F, Likar B. A review of methods for correction of intensity inhomogeneity in MRI. IEEE Transactions on Medical Imaging, 2007, 26(3): 405-421
|