[1]
|
[2] Mansour Y, Mohri M, Rostamizadeh A. Domain adaptation: learning bounds and algorithms. In: Proceedings of the 22nd Annual Conference on Learning Theory. Montral, Canada: Omnipress, 2009. 34-47
|
[2]
|
[3] Blitzer J, Crammer K, Kulesza A. Learning bounds for domain adaptation. In: Proceedings of the 21st Annual Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada: Curran Associates, 2007. 129-136
|
[3]
|
[4] Cortes C, Mansour Y, Mohri M. Learning bounds for importance weighting. In: Proceedings of the 24th Annual Conference on Neural Information Processing Systems. Vancouver, Canada: Curran Associates, 2010. 442-450
|
[4]
|
[5] Zhong E, Fan W, Peng J, Zhang K, Ren J T, Turaga D S, Verscheure O. Cross domain distribution adaptation via kernel mapping. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France: ACM, 2009. 1027-1036
|
[5]
|
[6] Kulis B, Saenko K, Darrell T. What you saw is not what you get: domain adaptation using asymmetric kernel transforms. In: Proceedings of the 24th IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, CO, USA: IEEE, 2011. 1785-1792
|
[6]
|
[7] Ben-David S, Blitzer J, Crammer K, Kulesza A, Pereira F, Vauqhan J W. A theory of learning from different domains. Machine Learning, 2010, 79(1-2): 151-175
|
[7]
|
[8] Joshi M, Dredze M, Cohen W W. What's in a domain? multi-domain learning for multi-attribute data. In: Proceedings of the 2013 NAACL-HLT. Westin Peachtree Plaza Hotel, Atlanta, Georgia, USA: The Association for Computational Linguistics, 2013. 685-690
|
[8]
|
[9] Wan X J. Co-training for cross-lingual sentiment classification. In: Proceedings of the 2009 Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP. Singapore: ACL, 2009. 235-243
|
[9]
|
Gabrilovich E, Markovitch S. Feature generation for text categorization using world knowledge. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence. Edinburgh, Scotland, UK: Professional Book Center, 2005. 1048-1053
|
[10]
|
Cucerzan S. Large-scale named entity disambiguation based on Wikipedia data. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Prague, Czech Republic: ACL, 2007. 708-716
|
[11]
|
Sarinnapakorn K, Kubat M. Combining subclassifiers in text categorization: a DST-based solution and a case study. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(12): 1638-1651
|
[12]
|
Gabriel P C F, Jeffrey X Y, Lu H J, Philip S Y. Text classification without negative examples revisit. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(1): 6-20
|
[13]
|
Al-Mubaid H, Umair S A. A new text categorization technique using distributional clustering and learning logic. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(9): 1156-1165
|
[14]
|
Gabrilovich E, Markovitch S. Enhancing text categorization with encyclopedic knowledge. In: Proceedings of the 21st National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference. 2006, Boston, Massachusetts, USA: AAAI Press, 2006. 1301-1306
|
[15]
|
Joshi M, Cohen W W, Dredze M, Ros C P. Multi-domain learning: when do domains matter? In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Jeju, Island, Korea: Association for Computational Linguistics, 2012. 1302-1312
|
[16]
|
Pan S J, Kwok J T, Yang Q, Pan J J. Adaptive localization in a dynamic WiFi environment through multi-view learning. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence. Vancouver, British Columbia, Canada: AAAI Press, 2007. 1023-1027
|
[17]
|
Chen X Y, Yuan X T, Chen Q, Yan S C, Chua T S. Multi-label visual classification with label exclusive context. IEEE Transactions on Computer Vision, 2011, 1(1): 834-841
|
[18]
|
Tu W T, Sun S L. Transferable discriminative dimensionality reduction. In: Proceedings of the 23rd IEEE International Conference on Tools with Artificial Intelligence. Boca Raton, FL, USA: IEEE, 2011. 865-868
|
[19]
|
Cortes C, Mohri M. Domain adaptation in regression. In: Proceedings of the 22nd Algorithmic Learning Theory International Conference. Espoo, Finland: Springer, 2011. 308-323
|
[20]
|
Zadrozny B. Learning and evaluating classifiers under sample selection bias. In: Proceedings of the 21st International Conference on Machine Learning. New York, NY, USA: ACM, 2004. 114-115
|
[21]
|
Sugiyama M, Nakajima S, Kashima H. Direct importance estimation with model selection and its application to covariate shift adaptation. In: Proceedings of the 21st Annual Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada: Curran Associates, 2008. 1433-1440
|
[22]
|
Fan W, Davidson I, Zadrozny B, Yu P S. An improved categorization of classifier's sensitivity on sample selection bias data mining. In: Proceedings of the 5th IEEE International Conference on Data Mining. Houston, Texas, USA: IEEE, 2005. 27-30
|
[23]
|
Quionero-Candela J, Sugiyama M, Schwaighofer A. Dataset Shift in Machine Learning. Boston: The MIT Press, 2009
|
[24]
|
Dai W Y, Yang Q, Xue G R, Yu Y. Boosting for transfer learning. In: Proceedings of the 24th International Conference on Machine Learning. Beijing, China: ACM, 2007. 193-200
|
[25]
|
Xu Z J, Sun S L. Multi-view transfer learning with Adaboost. In: Proceedings of the 23rd IEEE International Conference on Tools with Artificial Intelligence. Boca Raton, FL, USA: IEEE, 2011. 399-402
|
[26]
|
Xu Z J, Sun S L. Multi-source transfer learning with multi-view Adaboost. In: Proceedings of the 19th International Conference on Neural Information Processing. Doha, Qatar: Springer, 2012. 332-339
|
[27]
|
Tao J W, Chung K F L, Wang S. On minimum distribution discrepancy support vector machine for domain adaptation. Pattern Recognition, 2012, 45(11): 3962-3984
|
[28]
|
Sun S L, Xu Z J, Yang M. Transfer learning with part-based ensembles. Multiple Classifier Systems, 2013, 7872: 271-282
|
[29]
|
Tu W T, Sun S L. Cross-domain representation-learning framework with combination of class-separate and domain-merge objectives. In: Proceedings of the 1st International Workshop on Cross Domain Knowledge Discovery in Web and Social Network Mining. Beijing, China: ACM, 2012. 18-25
|
[30]
|
Blitzer J, McDonald R, Pereira F. Domain adaptation with structural correspondence learning. In: Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing. Sydney, Australia: ALC, 2006. 120-128
|
[31]
|
Dai W Y, Xue G R, Yang Q, Yu Y. Co-clustering based classification for out-of-domain documents. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, California, USA: ACM Press, 2007. 210-219
|
[32]
|
Pan S J, Kwok J T, Yang Q. Transfer learning via dimensionality reduction. In: Proceedings of the 23rd AAAI Conference on Artificial Intelligence. Chicago, Illinois, USA: AAAI Press, 2008. 677-682
|
[33]
|
Pan S J, Tsang I W, Kwok J T, Yang Q. Domain adaptation via transfer component analysis. IEEE Transactions on Neural Networks, 2011, 22(2): 199-210
|
[34]
|
Daum III H. Frustratingly easy domain adaptation. In: Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics. Prague, Czech Republic: ACL, 2007. 1785-1787
|
[35]
|
Bonilla E, Chai K M, Williams C. Multi-task Gaussian process prediction. In: Proceedings of the 21st Annual Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada: Curran Associates, 2008. 153-160
|
[36]
|
Schwaighofer A, Tresp V, Yu K. Learning Gaussian process kernels via hierarchical Bayes. In: Proceedings of the 17th Annual Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada: MIT Press, 2004. 1209-1216
|
[37]
|
Gao J, Fan W, Jiang J, Han J W. Knowledge transfer via multiple model local structure mapping. In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. Las Vegas, Nevada, USA: ACM Press, 2008. 283-291
|
[38]
|
Tu W T, Sun S L. Dynamical ensemble learning with model-friendly classifiers for domain adaptation. In: Proceedings of the 21st International Conference on Pattern Recognition. Tsukuba, Japan: IEEE, 2012. 1181-1184
|
[39]
|
Ben-David S, Lu T, Luu T. Impossibility theorems for domain adaptation. Journal of Machine Learning Research, 2010, 9: 129-136
|
[40]
|
Ben-David S, Urner R. On the hardness of domain adaptation. In: Proceedings of the 23rd International Conference. Lyon, France: Springer, 2012. 139-153
|
[41]
|
Ben-David S, Shalev-Shwartz S, Urner R. Domain adaptationcan quantity compensate for quality? In: Proceedings of the 2012 International Symposium on Artificial Intelligence and Mathematics. Fort Lauderdale, Florida, USA: ISAIM, 2012. 641-648
|
[42]
|
Xu H, Mannor S. Robustness and generalization. Machine Learning, 2012, 86(3): 391-423
|
[43]
|
Mansour Y, Schain M. Robust domain adaptation. In: Proceedings of the 12th International Symposium on Artificial Intelligence and Mathematics. Florida, USA: ISAIM, 2012, 27-36
|
[44]
|
Mansour Y, Mohri M, Rostamizadeh A. Domain adaptation with multiple sources. In Proceedings of the 22nd Annual Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada: Curran Associates, 2008. 1041-1048
|
[45]
|
Duan L X, Xu D, Tsang I W. Domain adaptation from multiple sources: a domain-dependent regularization approach. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(3): 504-518
|
[46]
|
Bellet A, Habrard A, Sebban M. Similarity learning for provably accurate sparse linear classification. In: Proceedings of the 29th International Conference on Machine Learning. Edinburgh, Scotland, UK: Omnipress, 2012. 1871-1878
|
[47]
|
Morvant E, Habrard A, Ayache S. Parsimonious unsupervised and semi-supervised domain adaptation with good similarity functions. Knowledge and Information Systems, 2012, 33(2): 309-349
|
[48]
|
Chapelle O, Shivaswamy P, Vadrevu S, Weinberger K, Zhang Y, Tseng B. Boosted multi-task learning. Machine Learning, 2011, 85(1-2): 149-173
|
[49]
|
Sun A, Grishman R. Cross-domain bootstrapping for named entity recognition. In: Proceedings of the SIGIR 2011 Workshop on Entity-Oriented Search. Beijing, China: ACM Press, 2011
|
[50]
|
Novotney S, Schwartz R M, Khudanpur S. Unsupervised arabic dialect adaptation with self-training. Interspeech, 2011, 541-544
|
[51]
|
Zhuang F Z, Luo P, Xiong H, He Q, Xiong Y H, Shi Z Z. Exploiting associations between word clusters and document classes for cross-domain text categorization. Statistical Analysis and Data Mining, 2011, 4(1): 100-114
|
[52]
|
Prettenhofer P, Stein B. Cross-language text classification using structural correspondence learning. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. Uppsala, Sweden: ALC, 2010. 1118-1127
|
[53]
|
Blitzer J, Kakade S, Foster D P. Domain adaptation with coupled subspaces. Journal of Machine Learning Research, 2011, 15(11): 173-181
|
[54]
|
Chen M, Weinberger K Q, Blitzer J. Co-training for domain adaptation. In: Proceedings of the 25th Annual Conference on Neural Information Processing Systems. Granada, Spain: Springer, 2011. 2456-2464
|
[55]
|
Tao J W, Chung F L, Wang S T. A kernel learning framework for domain adaptation learning. Science China Information Sciences, 2012, 55(9): 1983-2007
|
[56]
|
Scholkopf B, Smola A J, Williamson R C, Bartlett P L. New support vector algorithms. Neural computation, 2000, 12(5): 1207-1245
|
[57]
|
Joachims T. Transductive inference for text classification using support vector machines. In: Proceedings of the 16th International Conference on Machine Learning. Bled, Slovenia: Morgan Kaufmann, 1999. 200-209
|
[58]
|
Suykens J A K, Vandewalle J. Least squares support vector machine classifiers. Neural Processing Letters, 1999, 9(3): 293-300
|
[59]
|
Bruzzone L, Marconcini M. Domain adaptation problems: A DASVM classification technique and a circular validation strategy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5): 770-787
|
[60]
|
Duan L X, Tsang I W, Xu D, Maybank S J. Domain transfer svm for video concept detection. In: Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami, Florida, USA: IEEE, 2009. 1375-1381
|
[61]
|
Gretton A, Fukumizu K, Sriperumbudur B K. A fast consistent kernel two-sample test. In: Proceedings of the 23rd Annual Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada: Curran Associates, 2009. 673-681
|
[62]
|
Yang J, Yan R, Hauptmann A G. Cross-domain video concept detection using adaptive SVMs. In: Proceedings of the 15th international conference on Multimedia. Augsburg, Germany: ACM, 2007. 188-197
|
[63]
|
Jiang W, Zavesky E, Chang S F, Loui A. Cross-domain learning methods for high-level visual concept classification. In: Proceedings of the 15th IEEE International Conference. Adelaide, Australia: IEEE, 2008. 161-164
|
[64]
|
Quanz B, Huan J. Large margin transductive transfer learning. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management. New York, USA: ACM Press, 2009. 1327-1336
|
[65]
|
Duan L X, Tsang I W, Xu D. Domain transfer multiple kernel learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(3): 465-479
|
[66]
|
Jo Y, Oh A H. Aspect and sentiment unification model for online review analysis. In: Proceedings of the 4th International Conference on Web Search and Web Data Mining. Hong Kong, China: ACM, 2011. 815-824
|
[67]
|
Malandrakis N, Potamianos A, Iosif E. Kernel models for affective lexicon creation. In: Proceedings of the 12th Annual Conference of the International Speech Communication Association. Florence, Italy: ISCA press, 2011. 2977-2980
|
[68]
|
Li Q, Li H B, Ji H, Wang W, Zheng J, Huang F. Joint bilingual name tagging for parallel corpora. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management. Maui, USA: ACM, 2012. 1727-1731
|
[69]
|
Finkel J R, Manning C D. Hierarchical Bayesian domain adaptation. In: Proceedings of the 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Singapore: ACL, 2009. 602-610
|
[70]
|
Chelba C, Acero A. Adaptation of maximum entropy capitalizer: little data can help a lot. Computer Speech and Language, 2006, 20(4): 382-399
|
[71]
|
Arnold A, Nallapati R, Cohen W W. Exploiting feature hierarchy for transfer learning in named entity recognition. In: Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics. Ohio, USA: ACL, 2008. 245-253
|
[72]
|
Jiang J, Zhai C X. Instance weighting for domain adaptation in NLP. In: Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics. Prague, Czech Republic: ACL, 2007. 22-23
|
[73]
|
Daum H, Marcu D. Domain adaptation for statistical classifiers. Artificial Intelligence Research, 2011, 26: 101-126
|
[74]
|
Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks. In: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. Fort Lauderdale, USA: JMLR, 2011. 315-323
|
[75]
|
Zeman D, Resnik P. Cross-language parser adaptation between related languages. In: Proceedings of the 3rd International Joint Conference on Natural Language Processing. Hyderabad, India: ACL, 2008. 35-42
|
[76]
|
Hara T, Miyao Y, Tsujii J. Evaluating the impact of re-training a lexical disambiguation model on domain adaptation of an HPSG parser. Trends in Parsing Technology. Netherlands: Springer, 2010, 43: 257-275
|
[77]
|
Xu R F, Xu J, Wang X L. Instance level transfer learning for cross lingual opinion analysis. In: Proceedings of the 2nd Workshop on Computational Approaches to Subjectivity and Sentiment Analysis. Portland, Oregon, USA: ACL, 2011. 182-188
|
[78]
|
Glorot X, Bordes A, Bengio Y. Domain adaptation for large-scale sentiment classification: a deep learning approach. In: Proceedings of the 28th International Conference on Machine Learning. Bellevue, Washington, USA: Omnipress, 2011. 513-520
|
[79]
|
Das D, Smith N A. Semi-supervised frame-semantic parsing for unknown predicates. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Portland, Oregon, USA: ACL, 2011. 1435-1444
|
[80]
|
Blitzer J, Dredze M, Pereira F. Biographies, bollywood, boom-boxes and blenders: domain adaptation for sentiment classification. In: Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics. Prague, Czech Republic: ACL, 2007. 440-447
|
[81]
|
Bollegala D, Weir D J, Carroll J. Using multiple sources to construct a sentiment sensitive thesaurus for cross-domain sentiment classification. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Portland, Oregon, USA: ACL, 2011. 132-141
|
[82]
|
Pecina P, Toral A, Way A. Towards using web-crawled data for domain adaptation in statistical machine translation. In: Proceedings of the 15th Annual Conference of the European Association for Machine Translation. Leuven, Belgium: Springer, 2011. 63-72
|
[83]
|
Axelrod A, He X D, Gao J F. Domain adaptation via pseudo in-domain data selection. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. Portland, Oregon, USA: ACL, 2011. 355-362
|
[84]
|
Ding K, Jin L W. Incremental MQDF learning for writer adaptive handwriting recognition. In: Proceedings of the 2010 International Conference on Frontiers in Handwriting Recognition. Kolkata, India: IEEE, 2010. 559-564
|
[85]
|
Zhang X Y, Liu C L. Writer adaptation with style transfer mapping. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(7): 1773-1787
|
[86]
|
Faraji-Davar N, Decampos T, Windridge D, Kittler J, Christmas W. Domain adaptation in the context of sport video action recognition. In: Proceedings of the 25th Annual Conference on Neural Information Processing Systems. Sierra Nevada, Spain: Springer, 2011. 61-65
|
[87]
|
Duan L X, Tsang I W, Xu D, Chua T S. Domain adaptation from multiple sources via auxiliary classifiers. In: Proceedings of the 26th Annual International Conference on Machine Learning. Montreal, Canada: ACM, 2009. 37-51
|
[88]
|
Duh K, Kirchhoff K. Learning to rank with partially-labeled data. In: Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval. Singapore: ACM, 2008. 251-258
|
[89]
|
Geng B, Yang L J, Xu C, Hua X S. Ranking model adaptation for domain-specific search. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(4): 745-758
|
[90]
|
Tao Jian-Wen, Wang Shi-Tong. Kernel distribution consistency based local domain adaptation learning. Acta Automatica Sinica, 2013, 39(8): 1295-1309 (陶剑文, 王士同. 核分布一致局部领域适应学习. 自动化学报, 2013, 39(8): 1295-1309)
|
[91]
|
Gao Jun, Huang Li-Li, Sun Chang-Yin. A local weighted mean based domain adaptation learning framework. Acta Automatica Sinica, 2013, 39(7): 1037-1052 (皋军, 黄丽莉, 孙长银. 一种基于局部加权均值的领域适应学习框架. 自动化学报, 2013, 39(7): 1037-1052)
|
[92]
|
Tao Jian-Wen, Wang Shi-Tong. Kernel support vector machine for domain adaptation. Acta Automatica Sinica, 2012, 38(5): 797-811 (陶剑文, 王士同. 领域适应核支持向量机. 自动化学报, 2012, 38(5): 797-811)
|
[93]
|
Jenatton R, Audibert J Y, Bach F. Structured variable selection with sparsity-inducing norms. The Journal of Machine Learning Research, 2011, 12: 2777-2824
|
[94]
|
Poultney C, Chopra S, Cun Y L. Efficient learning of sparse representations with an energy-based model. In: Proceedings of the 20th Annual Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada: MIT Press, 2006. 1137-1144
|
[95]
|
Christoudias C, Urtasun R, Darrell T. Multi-view learning in the presence of view disagreement. The Computing Research Repository, 2012, 12(6): 1153-1159
|
[96]
|
Ganchev K, Graca J, Blitzer J, Taskar B. Multi-view learning over structured and non-identical outputs. The Computing Research Repository, 2012, 12(6): 1206-1214
|
[97]
|
Koehn P, Schroeder J. Experiments in domain adaptation for statistical machine translation. In: Proceedings of the 2nd Workshop on Statistical Machine Translation. Prague, Czech Republic: ACL, 2007. 224-227
|
[98]
|
He X. Using word dependent transition models in HMM based word alignment for statistical machine translation. In: Proceedings of the 2nd Workshop on Statistical Machine Translation. Prague, Czech Republic: ACL, 2007. 80-87
|
[99]
|
Koehn P, Hoang H, Birch A. Moses: open source toolkit for statistical machine translation. In: Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions. Prague, Czech Republic: ACL, 2007. 177-180
|
[100]
|
Matsoukas S, Rosti A V I, Zhang B. Discriminative corpus weight estimation for machine translation. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. Singapore: ACL, 2009. 708-717
|
[101]
|
Och F J. Minimum error rate training in statistical machine translation. In: Proceedings of the 41st Annual Meeting on Association for Computational Linguistics. Sapporo Convention Center, Sapporo, Japan: ACL, 2003. 160-167
|
[102]
|
Lei D M, Ng A Y, Jordan M I. Latent dirichlet allocation. The Journal of Machine Learning Research, 2003, 3: 993-1022
|
[103]
|
Guo H L, Zhu H J, Guo Z L. Domain adaptation with latent semantic association for named entity recognition. In: Proceedings of the 2009 North American Chapter of the Association of Computational Linguistics. Boulder, Colorado, USA: ACL, 2009. 281-289
|