[1]
|
[2] Wasserman R C. Electronic medical records (EMRs), epidemiology, and epistemology: reflections on EMRs and future pediatric clinical research. Academic Pediatrics, 2011, 11(4): 280-287
|
[2]
|
[3] Uzuner O, Mailoa J, Ryan R, Sibanda T. Semantic relations for problem-oriented medical records. Artificial Intelligence in Medicine, 2010, 50(2): 63-73
|
[3]
|
[4] Demner-Fushman D, Chapman W W, McDonald C J. What can natural language processing do for clinical decision support? Journal of Biomedical Informatics, 2009, 42(5): 760-772
|
[4]
|
[5] Eysenbach G. Recent advances: consumer health informatics. British Medical Journal, 2000, 320(7251): 1713-1716
|
[5]
|
Lin Dong, Shao Jun-Li. A general and practical diagnosing and treating expert system of medicine. Acta Automatica Sinica, 1995, 21(3): 380-382(林东, 邵军力. 医学诊疗领域通用专家系统设计与实现. 自动化学报, 1995, 21(3): 380-382)
|
[6]
|
[7] Sager N, Friedman C, Lyman M S. Review of Medical language processing: computer management of narrative data. Computational Linguistics, 1989, 15(3): 195-198
|
[7]
|
[9] Uzuner O, Luo Y, Szolovits P. Evaluating the state-of-the-art in automatic de-identification. Journal of the American Medical Informatics Association, 2007, 14(5): 550-563
|
[8]
|
Uzuner O, Solti I, Cadag E. Extracting medication information from clinical text. Journal of the American Medical Informatics Association, 2010, 17(5): 514-518
|
[9]
|
Xu Yong-Dong, Quan Guang-Ri, Wang Ya-Dong. Research of electronic medical record key information extraction based on HL7. Journal of Harbin Institute of Technology, 2011, 43(11): 89-94(徐永东, 权光日, 王亚东. 基于HL7的电子病历关键信息抽取技术研究. 哈尔滨工业大学学报, 2011, 43(11): 89-94)
|
[10]
|
Uzuner O, South B R, Shen S, DuVall S L. 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. Journal of the American Medical Informatics Association, 2011, 18(5): 552-556
|
[11]
|
Chapman W W, Bridewell W, Hanbury P, Cooper G F, Buchanan B G. A simple algorithm for identifying negated findings and diseases in discharge summaries. Journal of Biomedical Informatics, 2001, 34(5): 301-310
|
[12]
|
Zheng J P, Chapman W W, Crowley R S, Savova G K. Coreference resolution: a review of general methodologies and applications in the clinical domain. Journal of Biomedical Informatics, 2011, 44(6): 1113-1122
|
[13]
|
Tian Y H. Coreference Resolutionon Entities and Events for Hospital Discharge Summaries [Master dissertation], Massachusetts Institute of Technology, USA, 2007
|
[14]
|
Uzuner O, Bodnari A, Shen S Y, Forbush T, Pestian J, South B R. Evaluating the state of the art in coreference resolution for electronic medical records. Journal of the American Medical Informatics Association, 2012, 19(5): 786-791
|
[15]
|
Filannino M. Temporal expression normalisation in natural language texts. ArXiv Preprint, ArXiv Preprint arXiv: 1206.2010, 2012
|
[16]
|
UzZaman N, Llorens H, Allen J, Derczynski L, Verhagen M, Pustejovsky J. TempEval-3: Evaluating events, time expressions, and tem-poral relations. ArXiv Preprint, ArXiv Preprint arXiv: 1206.5333, 2012
|
[17]
|
Zhou X J, Li H M, Lu X D, Duan H L. Temporal expression recognition and temporal relationship extraction from Chinese narrative medical records. In: Proceedings of the 5th International Conference on Bioinformatics and Biomedical Engineering. Wuhan, China: IEEE, 2011. 1-4
|
[18]
|
Sun W, Rumshisky A, Uzuner O. Evaluating temporal relations in clinical text: 2012 I2B2 challenge. Journal of the American Medical Informatics Association, 2013, 20(5): 806-813
|
[19]
|
Tange H J, Hasman A, Robbe P F, Schouten H C. Medical narratives in electronic medical records. International Journal of Medical Informatics, 1997, 46(1): 7-29
|
[20]
|
McDonald C J, Overhage J M, Tierney W M, Dexter P R, Martin D K, Suico J G, Zafar A, Schadow G, Blevins L, Glazener T, Meeks-Johnson J, Lemmon L, Warvel J, Porterfield B, Warvel J, Cassidy P, Lindbergh D, Belsito A, Tucker M, Williams B, Wodniak C. The regenstrief medical record system: a quarter century experience. International Journal of Medical Informatics, 1999, 54(3): 225-53
|
[21]
|
Fries J F. Time-oriented patient records and a computer databank. Journal of the American Medical Association, 1972, 222(12): 1536-1542
|
[22]
|
Weed L L. Medical records that guide and teach. New England Journal of Medicine, 1968, 278(12): 593-600
|
[23]
|
Jacobs L. Interview with Lawrence Weed, MDthe father of the problem-oriented medical record looks ahead. The Permanente Journal, 2009, 13(3): 84-89
|
[24]
|
Bossen C. Evaluation of a computerized problem-oriented medical record in a hospital department: does it support daily clinical practice? International Journal of Medical Informatics, 2007, 76(8): 592-600
|
[25]
|
Lynette H, Sager N. Automatic information formatting of a medical sublanguage. In: Proceedings of the 1982 Sublanguage: Studies of Language in Restricted Semantic Domains. Berlin, German: Walter de Gruyter, 1982. 27-80
|
[26]
|
Friedman C, Kra P, Rzhetsky A. Two biomedical sublanguages: a description based on the theories of Zellig Harris. Journal of Biomedical Informatics, 2002, 35(4): 222-235
|
[27]
|
Meystre S M, Savova G K, Kipper-Schuler K C, Hurdle J F. Extracting information from textual documents in the electronic health record: a review of recent research. Yearbook of Medical Informatics, 2008, 47(Suppl 1): 128-144
|
[28]
|
O'Donnell H C, Kaushal R, Barron Y, Callahan M A, Adelman R D, Siegler E L. Physicians' attitudes towards copy and pasting in electronic note writing. Journal of General Internal Medicine, 2009, 24(1): 63-68
|
[29]
|
Hammond K W, Helbig S T, Benson C C, Brathwaite-Sketoe B M. Are electronic medical records trustworthy? Observations on copying, pasting and duplication. In: Proceedings of the 2003 American Medical Informatics Association 2003 Annual Symposium. Washington DC, USA: AMIA, 2003. 269-273
|
[30]
|
Wilcox L, Lu J, Lai J, Feiner S, Jordan D. ActiveNotes: computer-assisted creation of patient progress notes. In: Proceedings of the 27th International Conference Extended Abstracts on Human Factors in Computing Systems. New York, USA: ACM Press, 2009. 3323-3328
|
[31]
|
Wilcox L, Lu J, Lai J, Feiner S, Jordan D. Physician-driven management of patient progress notes in an intensive care unit. In: Proceedings of the 28th International Conference Extended Abstracts on Human Factors in Computing Systems. New York, USA: ACM Press, 2010. 1879-1888
|
[32]
|
Grishman R, Sundheim B. Message Understanding Conference-6: a brief history. In: Proceedings of the 16th conference on Computational linguistics-Volume 1. Stroudsburg, PA, USA: Association for Computational Linguistics, 1996. 466-471
|
[33]
|
Lang Jun, Qin Bing, Liu Ting, Li Zheng-Hua, Li Sheng. Number type recognition of Chinese personal noun phrase. Acta Automatica Sinica, 2008, 34(8): 972-979 (郎君, 秦兵, 刘挺, 李正华, 李生. 中文人称名词短语单复数自动识别. 自动化学报, 2008, 34(8): 972-979)
|
[34]
|
Tang Bu-Zhou, Wang Xiao-Long, Wang Xuan. Confidence-weighted online sequence labeling algorithm. Acta Automatica Sinica, 2011, 37(2): 188-195(汤步洲, 王晓龙, 王轩. 置信度加权在线序列标注算法. 自动化学报, 2011, 37(2): 188-195)
|
[35]
|
Doddington G, Mitchell A, Przybocki M, Ramshaw L, Strassel S, Weischedel R. The automatic content extraction (ACE) program tasks, data, and evaluation. In: Proceedings of the 2004 International Conference on Language Resources and Evaluation. Lisbon, Portugal: European Language Resources Association, 2004. 837-840
|
[36]
|
Wang Ning, Ge Rui-Fang, Yuan Chun-Fa, Wong K F, Li Wen-Jie. Company name identification in Chinese financial domain. Journal of Chinese Information Processing, 2002, 16(2): 1-6 (王宁, 葛瑞芳, 苑春法, 黄锦辉, 李文捷. 中文金融新闻中公司名的识别. 中文信息学报, 2002, 16(2): 1-6)
|
[37]
|
Lin X D, Peng H, Liu B. Chinese named entity recognition using support vector machines. In: Proceedings of the 2006 International Conference on Machine Learning and Cybernetics. Guangzhou, China: IEEE, 2006. 4216-4220
|
[38]
|
Zhao Jian. Research on Conditional Probabilistic Model and Its Application in Chinese Named Entity Recognition [Ph.D. dissertation], Harbin Institute of Technology, China, 2006(赵健. 条件概率模型研究及其在中文名实体识别中的应用 [博士学位论文], 哈尔滨工业大学, 中国, 2006)
|
[39]
|
Finkel J R, Grenager T, Manning C. Incorporating non-local information into information extraction systems by Gibbs sampling. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2005. 363-370
|
[40]
|
Finkel J R, Manning C. Joint parsing and named entity recognition. In: Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2009. 326-334
|
[41]
|
Nadeau D, Sekine S. A survey of named entity recognition and classification. Lingvisticae Investigationes, 2007, 30(1): 3-26
|
[42]
|
Ke X, Li S Z. Chinese organization name recognition based on co-training algorithm. In: Proceedings of the 3rd International Conference on Intelligent System and Knowledge Engineering. Xiamen, China: IEEE, 2008. 771-777
|
[43]
|
Nadeau D. Semi-supervised Named Entity Recognition: Learning to Recognize 100 Entity Types with Little Supervision [Ph.D. dissertation], University of Ottawa, Canada, 2007
|
[44]
|
Ando R K, Zhang T. A framework for learning predictive structures from multiple tasks and unlabeled data. Journal of Machine Learning Research, 2005, 6: 1817-1853
|
[45]
|
Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P. Natural language processing (almost) from scratch. Journal of Machine Learning Research, 2011, 12: 2493-2537
|
[46]
|
Zhang Qi. Research on Entity Relation Recognition in Information Extraction [Ph.D. dissertation], University of Science and Technology of China, China, 2010 (张奇. 信息抽取中实体关系识别研究 [博士学位论文], 中国科学技术大学, 中国, 2010)
|
[47]
|
Swanson D R. Complementary structures in disjoint science literatures. In: Proceedings of the 14th annual international ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 1991. 280-289
|
[48]
|
Cohen A M, Hersh W R. A survey of current work in biomedical text mining. Briefings in Bioinformatics, 2005, 6(1): 57-71
|
[49]
|
Chen J X. Automatic Relation Extraction Among Named Entities from Text Contents [Ph.D. dissertation], National University of Singapore, Singapore, 2006
|
[50]
|
Che Wan-Xiang, Liu Ting, Li Sheng. Automatic entity relation extraction. Journal of Chinese Information Processing, 2004, 19(2): 1-6(车万翔, 刘挺, 李生. 实体关系自动抽取. 中文信息学报, 2004, 19(2): 1-6)
|
[51]
|
Aone C, Ramos-Santacruz M. REES: a large-scale relation and event extraction system. In: Proceedings of the 6th Conference on Applied Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2000. 76-83
|
[52]
|
Agichtein E, Gravano L. Snowball: Extracting relations from large plain-text collections. In: Proceedings of the 5th ACM conference on Digital libraries. New York, USA: ACM, 2000. 85-94
|
[53]
|
Bunescu R C, Mooney R J. Learning to extract relations from the web using minimal supervision. In: Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics (ACL' 07). Prague, Czech Republic, 2007. 576-583
|
[54]
|
Zhang Z. Weakly-supervised relation classification for information extraction. In: Proceedings of the 13th ACM International Conference on Information and Knowledge Management. New York, USA: ACM, 2004. 581-588
|
[55]
|
Hasegawa T, Sekine S, Grishman R. Discovering relations among named entities from large corpora. In: Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2004. 415
|
[56]
|
Chen J X, Ji D D, Tan C L, Niu Z Y. Unsupervised feature selection for relation extraction. In: Proceedings of the 2005 International Joint Conference on Natural Language Processing. Jeju Island, Korea: Springer, 2005. 262-267
|
[57]
|
Zhang Zhi-Tian. The Research of Relation Extraction with Unsupervised Method [Master dissertation], Harbin Institute Technology, China, 2007(张志田. 无监督关系抽取方法研究 [硕士学位论文], 哈尔滨工业大学, 中国, 2007)
|
[58]
|
Zhang Y, Zhou J. A trainable method for extracting Chinese entity names and their relations. In: Proceedings of the 2nd Workshop on Chinese language processing: held in conjunction with the 38th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2000. 66-72
|
[59]
|
Suchanek F M, Ifrim G, Weikum G. Combining linguistic and statistical analysis to extract relations from web documents. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2006. 712-717
|
[60]
|
Sleator D, Temperley D. Parsing English with a Link Grammar, Technical Report CMU-CS-91-196, School of Computer Science, Carnegie Mellon University, USA, 1991
|
[61]
|
Brin S. Extracting patterns and relations from the world wide web. The World Wide Web and Databases, 1999, 1590(2): 172-183
|
[62]
|
Ning Hai-Yan. Comparative Study of Automatic Entity Relation Extraction [Master dissertation], Harbin Insititute of Technology, China, 2010 (宁海燕. 实体关系自动抽取技术的比较研究 [硕士学位论文], 哈尔滨工业大学, 中国, 2010)
|
[63]
|
Fader A, Soderland S, Etzioni O. Identifying relations for open information extraction. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2011. 1535-1545
|
[64]
|
Carlson A, Betteridge J, Kisiel B, Settles B, Hruschka E R, Mitchell T M. Toward an architecture for never-ending language learning. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence. Georgia, USA: AAAI, 2010. 1306-1313
|
[65]
|
Suchanek F M, Kasneci G, Weikum G. YAGO: A core of semantic knowledge unifying wordnet and Wikipedia. In: Proceedings of the 16th International Conference on World Wide Web. New York, USA: ACM, 2007. 697-706
|
[66]
|
Biega J, Kuzey E, Suchanek F M. Inside YAGO2s: a transparent information extraction architecture. In: Proceedings of the 22nd International Conference on World Wide Web Companion. Republic and Canton of Geneva, Switzerland: International World Wide Web Conferences Steering Committee, 2013. 325-328
|
[67]
|
Kim J D, Ohta T, Tateisi Y, Tsujii J. GENIA corpusa semantically annotated corpus for bio-textmining. Bioinformatics, 2003, 19(Suppl 1): 180-182
|
[68]
|
Tanabe L, Xie N, Thom L H, Matten W, Wilbur W J. GENETAG: a tagged corpus for gene/protein named entity recognition. BMC Bioinformatics, 2005, 6(Suppl 1): S3
|
[69]
|
Kim J D, Ohta T, Tsuruoka Y, Tateisi Y, Collier N. Introduction to the bio-entity recognition task at JNLPBA. In: Proceedings of the 2004 International Joint Workshop on Natural Language Processing in Biomedicine and Its Applications. Stroudsburg, PA, USA: Association for Computational Linguistics, 2004. 70-75
|
[70]
|
Arighi C N, Roberts P M, Agarwal S, Bhattacharya S, Cesareni G, Chatr-Aryamontri A, Clematide S, Gaudet P, Giglio M G, Harrow I, Huala E, Krallinger M, Leser U, Li D, Liu F, Lu Z, Maltais L J, Okazaki N, Perfetto L, Rinaldi F, Saetre R, Salgado D, Srinivasan P, Thomas P E, Toldo L, Hirschman L, Wu C H. BioCreative III interactive task: an overview. BMC Bioinformatics, 2011, 12(Suppl 8): S4
|
[71]
|
Xu Wei, Fu Bin, Liu Liu, Yuan Chun-Fa, Li Wen-Jie. Domain extension of Chinese named entity recognition. In: Proceedings of the 9th Chinese National Conference on Computatinal Linguistics. Dalian, China, 2007. 503-508 (徐薇, 付滨, 刘柳, 苑春法, 李文捷. 中文命名实体识别系统的领域扩展, 第九届全国计算语言学学术会议. 大连, 中国, 2007. 503-508)
|
[72]
|
Uzuner O, Solti I, Xia F, Cadag E. Community annotation experiment for ground truth generation for the I2B2 medication challenge. Journal of the American Medical Informatics Association, 2010, 17(5): 519-523
|
[73]
|
Baldridge J, Osborne M. Active learning and the total cost of annotation. In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing. Barcelona, Spain: Association for Computational Linguistics, 2004. 9-16
|
[74]
|
Settles B, Craven M, Friedland L. Active learning with real annotation costs. In: Proceedings of the 2008 NIPS Workshop on Cost-Sensitive Learning. Vancouver, Canada, 2008. 1-10
|
[75]
|
Tomanek K, Wermter J, Hahn U. An approach to text corpus construction which cuts annotation costs and maintains reusability of annotated data. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Prague, Czech Republic, 2007. 486-495
|
[76]
|
Blum A, Mitchell T. Combining labeled and unlabeled data with co-training. In: Proceedings of the 11th Annual Conference on Computational Learning Theory. New York, USA: ACM, 1998. 92-100
|
[77]
|
Yarowsky D. Unsupervised word sense disambiguation rivaling supervised methods. In: Proceedings of the 33rd Annual Meeting on Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 1995. 189-196
|
[78]
|
Zhu X J, Goldberg A B. Introduction to semi-supervised learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, 2009, 3(1): 1-130
|
[79]
|
Fernandes E R, Brefeld U. Learning from partially annotated sequences. In: Proceedings of the 2011 European Conference on Machine Learning and Knowledge Discovery in Databases (Volume Part I). Berlin, Heidelberg: Springer-Verlag, 2011. 407-422
|
[80]
|
Lou X H, Hamprecht F. Structured learning from partial annotations. ArXiv Preprint, ArXiv Preprint, arXiv: 1206. 6421, 2012
|
[81]
|
Hovy D, Hovy E. Exploiting partial annotations with EM training. In: Proceedings of the 2012 NAACL-HLT Workshop on the Induction of Linguistic Structure. Stroudsburg, PA, USA: Association for Computational Linguistics, 2012. 31-38
|
[82]
|
Tsuboi Y, Kashima H, Oda H, Mori S, Matsumoto Y. Training conditional random fields using incomplete annotations. In: Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008). Manchster, UK: ACM, 2008. 897-904
|
[83]
|
Pan S J, Yang Q. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359
|
[84]
|
Torrey L, Shavlik J. Transfer learning. Handbook of Research on Machine Learning Applications. Hershey, PA: IGI Global, 2009
|
[85]
|
Bodenreider O. The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Research, 2004, 32(suppl 1): D267-D270
|
[86]
|
Friedman C, Alderson P O, Austin J, Cimino J J, Johnson S B. A general natural-language text processor for clinical radiology. Journal of the American Medical Informatics Association, 1994, 1(2): 161-174
|
[87]
|
Coden A, Savova G, Sominsky I, Tanenblatt M, Masanz J, Schuler K, Cooper J, Guan W, de Groen P C. Automatically extracting cancer disease characteristics from pathology reports into a disease knowledge representation model. Journal of biomedical informatics, 2009, 42(5): 937-949
|
[88]
|
Savova G K, Masanz J, Ogren P V, Tanenblatt M, Masanz J, Schuler K, Cooper J, Guan W, de Groen Piet C. Mayo clinical text analysis and knowledge extraction system (cTAKES): architecture, component evaluation and applications. Journal of the American Medical Information Association, 2010, 17(5): 507-13
|
[89]
|
Ferrucci D, Lally A. UIMA: an architectural approach to unstructured information processing in the corporate research environment. Natural Language Engineering, 2004, 10(3-4): 327-348
|
[90]
|
Ye Feng, Chen Ying-Ying, Zhou Gen-Gui, Li Hao-Min, Li Ying. Intelligent recognition of named entity in electronic medical records. Chinese Journal of Biomedical Engineering, 2011, 30(2): 256-262 (叶枫, 陈莺莺, 周根贵, 李昊旻, 李莹. 电子病历中命名实体的智能识别. 中国生物医学工程学报, 2011, 30(2): 256-262)
|
[91]
|
Li D C, Kipper-Schuler K, Savova G. Conditional random fields and support vector machines for disorder named entityrecognition in clinical texts. In: Proceedings of the 2008 Workshop on Current Trends in Biomedical Natural Language Processing. Morristown, NJ, USA: Association for Computational Linguistics, 2008. 94-95
|
[92]
|
Jiang M, Chen Y, Liu M, Rosenbloom S T, Mani S, Denny J C, Xu H. A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries. Journal of the American Medical Informatics Association, 2011, 18(5): 601-606
|
[93]
|
Jonnalagadda S, Cohen S T, Wu S, Gonzalez G. Enhancing clinical concept extraction with distributional semantics. Journal of Biomedical Informatics, 2012, 45(1): 129-140
|
[94]
|
de Bruijn B, Cherry C, Kiritchenko S, Martin J, Zhu X. Machine-learned solutions for three stages of clinical information extraction: the state of the art at I2B2 2010. Journal of the American Medical Informatics Association, 2011, 18(5): 557-562
|
[95]
|
Ogren P, Savova G, Chute C. Constructing evaluation corpora for automated clinical named entity recognition. In: Proceedings of the 6th International Conference on Language Resources and Evaluation (LREC'08). Marrakech, Morocco: European Language Resources Association, 2008. 28-30
|
[96]
|
Uzuner O, Goldstein I, Luo Y, Kohane I. Identifying patient smoking status from medical discharge records. Journal of the American Medical Informatics Association, 2007, 15(1): 14-24
|
[97]
|
Uzuner O. Recognizing obesity and comorbidities in sparse data. Journal of the American Medical Informatics Association, 2009, 16(4): 561-570
|
[98]
|
Aronow D B, Fangfang F, Croft W B. Ad hoc classification of radiology reports. Journal of the American Medical Informatics Association, 1999, 6(5): 393-411
|
[99]
|
Goryachev S, Sordo M, Zeng Q T, Ngo L. Implementation and Evaluation of Four Different Methods of Negation Detection, Technical Report, Decision Systems Group, Harvard Medical School, 2006
|
[100]
|
Mutalik P G, Deshpande A, Nadkarni P M. Use of general-purpose negation detection to augment concept indexing of medical documents: a quantitative study using the UMLS. Journal of the American Medical Informatics Association, 2001, 8(6): 598-609
|
[101]
|
Sohn S, Wu S, Chute C G. Dependency parser-based negation detection in clinical narratives. In: Proceedings of the 2012 AMIA Summits on Translational Science. San Francisco, USA: AMIA, 2012. 1-8
|
[102]
|
Harkema H, Dowling J N, Thornblade T, Chapman W W. ConText: an algorithm for determining negation, experiencer, and temporal status from clinical reports. Journal of Biomedical Informatics, 2009, 42(5): 839-851
|
[103]
|
Uzuner O, Zhang X, Sibanda T. Machine learning and rule-based approaches to assertion classification. Journal of the American Medical Informatics Association, 2009, 16(1): 109-115
|
[104]
|
Demner-Fushman D, Apostolova E, Islamaj D R, Lang F M, Neveol A, Shooshan S E, Aronson A R. NLM's system description for the fourth I2B2/VA challenge. In: Proceedings of the 2010 I2B2/VA Workshop on Challenges in Natural Language Processing for Clinical Data. Boston, MA, USA: I2B2, 2010
|
[105]
|
Grouin C, Abacha A B, Bernhard D. CARAMBA: concept, assertion, and relation annotation using machine-learning based approaches. In: Proceedings of the 2010 I2B2/VA Workshop on Challenges in Natural Language Processing for Clinical Data. Boston, MA, USA: I2B2, 2010
|
[106]
|
Clark C, Aberdeen J, Coarr M, Tresner-Kirsch D, Wellner B, Yeh A, Hirschman L. MITRE system for clinical assertion status classification. Journal of the American Medical Informatics Association, 18(5): 563-567
|
[107]
|
Frunza O, Inkpen D. Extraction of disease-treatment semantic relations from biomedical sentences. In: Proceedings of the 2010 Workshop on Biomedical Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2010. 91-98
|
[108]
|
Rink B, Harabagiu S, Roberts K. Automatic extraction of relations between medical concepts in clinical texts. Journal of the American Medical Informatics Association, 2011, 18(5): 594-600
|
[109]
|
Stone P J, Dunphy D C, Smith M S, Ogilvie D M. The General Inquirer: A Computer Approach to Content Analysis. Cambridge: MIT Press, 1966
|
[110]
|
Ryan R J. Groundtruth Budgeting: A Novel Approach to Semi-Supervised Relation Extraction of Medical Language [Master dissertation], Massachusetts Institute of Technology, USA, 2011
|
[111]
|
Wang X, Chused A, Elhadad N, Friedman C, Markatou M. Automated knowledge acquisition from clinical narrative reports. In: Proceedings of the 2008 AMIA Annual Symposium, 2008. 783-787
|
[112]
|
Chen E S, Hripcsak G, Xu H, Markatou M, Friedman C. Automated acquisition of disease drug knowledge from biomedical and clinical documents: an initial study. Journal of the American Medical Informatics Association, 2008, 15(1): 87-98
|
[113]
|
Roberts A, Gaizauskas R, Hepple M. Extracting clinical relationships from patient narratives. In: Proceedings of the 2008 Workshop on Current Trends in Biomedical Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2008. 10-18
|
[114]
|
Bekhuis T. Conceptual biology, hypothesis discovery, and text mining: Swanson's legacy. Biomedical Digital Libraries, 2006, 3(1): 2
|
[115]
|
Cameron D, Bodenreider O, Yalamanchili H, Danh T, Vallabhaneni S, Thirunarayan K, Sheth A P, Rindflesch T C. A graph-based recovery and decomposition of Swanson's hypothesis using semantic predications. Journal of Biomedical Informatics, 2013, 46(2): 238-251
|
[116]
|
Chapman W W, Nadkarni P M, Hirschman L, D'Avolio D W, Savova G K, Uzuner O. Overcoming barriers to NLP for clinical text: the role of shared tasks and the need for additional creative solutions. Journal of the American Medical Informatics Association, 2011, 18(5): 540-543
|
[117]
|
Pestian J P, Brew C, Matykiewicz P, Hovermale D J, Johnson N, Cohen K B. A shared task involving multi-label classification of clinical free text. In: Proceedings of the 2007 Workshop on BioNLP 2007: Biological, Translational, and Clinical Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2007. 97-104
|
[118]
|
Pestian J P, Matykiewicz P, Linn-Gust M. What's in a note: construction of a suicide note corpus. Biomedical Informatics Insights, 2012, 5: 1-6
|
[119]
|
Jiang Zhi-Peng, Zhao Fang-Fang, Guan Yi, Yang Jin-Feng. Research on Chinese electronic medical record oriented lexical corpus annotation. High Technology Letters, 2014, 24(6): 609-615 (蒋志鹏, 赵芳芳, 关毅, 杨锦锋. 面向中文电子病历的词法语料标注研究. 高技术通讯, 2014, 24(6): 609-615)
|
[120]
|
Xia F. The Segmentation Guidelines for the Penn Chinese Treebank (3.0). Technical Report IRCS-00-06, University of Pennsylvania, USA, 2000
|
[121]
|
Xia F. The Part-of-Speech Tagging Guidelines for the Penn Chinese Treebank (3.0). Technical Report IRCS-00-06, University of Pennsylvania, USA, 2000
|
[122]
|
Xue N, Xia F. The Bracketing Guide-lines for Penn Chinese Treebank Project. Technical Report IRCS-00-06, University of Pennsylvania, USA, 2000
|
[123]
|
Chen Z, Perl Y, Halper M, Geller J, Gu H. Partitioning the UMLS semantic network. IEEE Transactions on Information Technology in Biomedicine, 2002, 6(2): 102-108
|
[124]
|
Slaughter L, Ruland C, Rotegard A K. Mapping cancer patients' symptoms to UMLS concepts. In: Proceedings of the 2005 AMIA Annual Symposium, 2005. 699-703
|
[125]
|
Jimeno-Yepes A J, Aronson A R. Knowledge-based biomedical word sense disambiguation: comparison of approaches. BMC Bioinformatics, 2010, 11(1): 569-580
|
[126]
|
Jonquet C, Shah N H, Youn C H, Callendar C, Storey M A, Musen M A. NCBO annotator: semantic annotation of biomedical data. In: Proceedings of the 8th International Semantic Web Conference. Washington, DC, USA, 2009. 171-172
|
[127]
|
Pedersen T, Pakhomov S, McInnes B, Liu Y. Measuring the similarity and relatedness of concepts in the medical domain. In: Proceedings of the 2nd ACM SIGHIT Symposium on International Health Informatics. New York, USA: ACM, 2012. 879-880
|
[128]
|
Ruiz-Martinez J M, Valencia-Garcia R, Fernandez-Breis J T, Garcia-Sanchez T, Martinez-Bejar R. Ontology learning from biomedical natural language documents using UMLS. Expert Systems with Applications, 2011, 38(10): 12365-12378
|
[129]
|
Rosse C, Mejino J. A reference ontology for biomedical informatics: the foundational model of anatomy. Journal of Biomedical Informatics, 2003, 36(6): 478-500
|
[130]
|
Pisanelli D M, Battaglia M, De Lazzari C. ROME: a reference ontology in medicine. In: Proceedings of the 2007 Conference on New Trends in Software Methodologies, Tools and Techniques. Amsterdam, The Netherlands: IOS Press, 2007. 485-493
|
[131]
|
Wang X, Thompson P, Tsujii J, Anani-adou S. Biomedical Chinese-English CLIR using an extended CMeSH resource to expand queries. In: Proceedings of the 8th International Conference on Language Resources and Evaluation. Istanbul, Turkey: European Language Resources Association, 2012. 1148-1155
|
[132]
|
Shen Tong. The Chinesization and Formalization of Unified Medical Language System [Master dissertation], Harbin Insititute of Technology, China, 2013 (沈彤. 一体化医学语言系统的中文化和形式化表示研究 [硕士学位论文], 哈尔滨工业大学, 中国, 2013)
|