2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小数据集条件下基于双重约束的BN参数学习

郭志高 高晓光 邸若海

郭志高, 高晓光, 邸若海. 小数据集条件下基于双重约束的BN参数学习. 自动化学报, 2014, 40(7): 1509-1516. doi: 10.3724/SP.J.1004.2014.01509
引用本文: 郭志高, 高晓光, 邸若海. 小数据集条件下基于双重约束的BN参数学习. 自动化学报, 2014, 40(7): 1509-1516. doi: 10.3724/SP.J.1004.2014.01509
GUO Zhi-Gao, GAO Xiao-Guang, DI Ruo-Hai. Learning Bayesian Network Parameters under Dual Constraints from Small Data Set. ACTA AUTOMATICA SINICA, 2014, 40(7): 1509-1516. doi: 10.3724/SP.J.1004.2014.01509
Citation: GUO Zhi-Gao, GAO Xiao-Guang, DI Ruo-Hai. Learning Bayesian Network Parameters under Dual Constraints from Small Data Set. ACTA AUTOMATICA SINICA, 2014, 40(7): 1509-1516. doi: 10.3724/SP.J.1004.2014.01509

小数据集条件下基于双重约束的BN参数学习

doi: 10.3724/SP.J.1004.2014.01509
基金项目: 

国家自然科学基金(60774064),教育部博士点基金(20116102110026)资助

详细信息
    作者简介:

    郭志高 西北工业大学电子信息学院博士研究生. 主要研究方向为小数据集条件下贝叶斯网络参数学习.E-mail:guozhigao2004@163.com

Learning Bayesian Network Parameters under Dual Constraints from Small Data Set

Funds: 

Supported by National Natural Science Foundation of China (60774064), Research Fund for the Doctoral Program of Higher Education of China (20116102110026)

  • 摘要: 针对小数据集条件下的贝叶斯网络(Bayesian network,BN)参数学习问题,提出了一种基于双重约束的贝叶斯网络参数学习方法. 首先,对网络中的参数进行分析并将网络中的参数划分为: 父节点组合状态相同而子节点状态不同的参数和父节点组合状态不同而子节点状态相同的参数;然后,针对第一类参数提出了一种新的基于Beta分布拟合的贝叶斯估计方法,而针对第二类参数利用已有的保序回归估计方法进行学习,进而实现了对网络中参数的双重约束学习;最后,通过仿真实例说明了基于双重约束的参数学习方法对小数据集条件下贝叶斯网络参数学习精度提高的有效性.
  • [1] Peal J. Probabilistic Reasoning in Intelligent Systems. Massachusetts: Morgan Kaufmann, 1988
    [2] Tamda Y, Imoto S, Araki H. Estimating genome-wide gene networks using nonparametric Bayesian network models on massively parallel computers. IEEE Transactions on Computational Biology and Bioinformatics, 2011, 3(8): 683-697
    [3] Ibrahim W, Beiu V. Using Bayesian networks to accurately calculate the reliability of complementary metal oxide semiconductor gates. IEEE Transactions on Reliability, 2011, 60(3): 538-549
    [4] Jin Nai-Gao, Yin Fu-Liang, Chen Zhe. Audio-visual speaker tracking based on dynamic Bayesian network. Acta Automatica Sinica, 2008, 34(9): 1083-1089(金乃高, 殷福亮, 陈喆. 基于动态贝叶斯网络的音视频联合说话人跟踪. 自动化学报, 2008, 34(9): 1083-1089)
    [5] Chen Hai-Yang, Gao Xiao-Guang, Fan Hao. Inference algorithm of variable structure DDBNs and multi-target recognition. Acta Aeronautica et Astronautica Sinica, 2010, 31(11): 2222-2227(陈海洋, 高晓光, 樊昊. 变结构DDBNS的推理算法与多目标识别. 航空学报, 2010, 31(11): 2222-2227)
    [6] Du You-Tian, Chen Feng, Xu Wen-Li. Approach to human activity multi-scale analysis and recognition based on multi-layer dynamic Bayesian network. Acta Automatica Sinica, 2009, 31(11): 225-232(杜友田, 陈峰, 徐文立. 基于多层动态贝叶斯网络的人的行为多尺度分析及识别方法. 自动化学报, 2009, 31(11): 225-232)
    [7] Wan Jiu-Qing, Liu Qing-Yun. Data association in visual sensor networks based on high-order spatial-temporal model. Acta Automatica Sinica, 2012, 38(2): 236-247(万九卿, 刘青云. 基于高阶时空模型的视觉传感网络数据关联方法. 自动化学报, 2012, 38(2): 236-247)
    [8] Infantes G, Ghallab M, Ingrand F. Learning the behavior model of a robot. Autonomous Robots, 2011, 30(3): 157-177
    [9] Druzdzel M. Probabilistic Reasoning in Decision Support Systems: from Computation to Common Sense [Ph.D. dissertation], Carnegie Mellon University, USA, 1993
    [10] Druzdzel M, van der Gaag L C. Building probabilistic networks: where do the numbers come from? IEEE Transactions on Knowledge and Data Engineering, 2000, 12(4): 481-486
    [11] Helsper E, Gaag L, Groenendal F. Designing a procedure for the acquisition of probability constraints for Bayesian networks. In: Proceedings of the 14th Conference on Engineering Knowledge in the Age of the Semantic Web. Northampton, UK: Springer, 2004. 280-292
    [12] Wittig F, Jameson A. Exploiting qualitative knowledge in the learning of conditional probabilities of Bayesian networks. In: Proceedings of the 16th International Conference on Uncertainty in Artificial Intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2000. 644-652
    [13] Altendorf E, Restificar A, Dietterich T. Learning from sparse data by exploiting monotonicity constraints. In: Proceedings of the 21st International Conference on Uncertainty in Artificial Intelligence. Arlington, Virginia: AUAI Press, 2005. 18-26
    [14] Feelders A, van der Gaag L C. Learning Bayesian network parameters under order constraints. Journal of Approximate Reasoning, 2006, 42(1-2): 37-53
    [15] Niculescu R, Mitchell T, Rao R B. Bayesian network learning with parameter constraints. Journal of Machine Learning Research, 2006, 7(1): 1357-1383
    [16] Campos C, Cozman F. Belief updating and learning in semi-qualitative probabilistic networks. In: Proceedings of the 21st International Conference on Uncertainty in Artificial Intelligence. Edinburgh, Scotland: AUAI Press, 2005. 153-160
    [17] de Campos C P, Tong Y, Ji Q. Constrained maximum likelihood learning of Bayesian networks for facial action recognition. In: Proceedings of the Tenth European Conference on Computer Vision. Marseille, France: Springer, 2008. 168-181
    [18] de Campos C P, Ji Q. Improving Bayesian network parameter learning using constraints. In: Proceedings of the 19th International Conference on Pattern Recognition. Tampa FL: IEEE, 2008. 1-4
    [19] Isozaki T, Kato N, Ueno M. Minimum free energies with "data temperature" for parameter learning of Bayesian networks. In: Proceedings of the 20th International Conference on Tools with Artificial Intelligence. Ohio, USA: IEEE, 2008. 371-378
    [20] Liao Wen-Hua, Qiang Ji. Learning Bayesian network parameters under incomplete data with domain knowledge. Pattern Recognition, 2009, 42(11): 3046-3056
    [21] Rui Chang, Wei Wang. Novel algorithm for Bayesian network parameter learning with informative prior constraints. In: Proceedings of the 2010 International Joint Conference on Neural Networks. Barcelona, Spain: IEEE, 2010. 1-8
    [22] Brunk H. Maximum likelihood estimates of monotone parameters. Annuals of Mathematical Statistics, 1955, 26(11): 607-616
    [23] Murphy K P. Dynamic Bayesian Networks: Representation, Inference and Learning [Ph.D. dissertation], University of California, Berkeley, USA, 1993
    [24] Bidyuk P I, Terent A N, Gasanov A S. Construction and methods of learning of Bayesian networks. Cybernetics and Systems Analysis, 2005, 41(4): 587-598
    [25] Nielsen U, Pellet J, Elisseeff A. Explanation trees for causal Bayesian networks. In: Proceedings of the 24th International Conference on Uncertainty in Artificial Intelligence. Helsinki, Finland: AUAI Press, 2008. 427-434
    [26] Thwaites T. Causal identifiability via chain event graphs. Artificial Intelligence, 2013, 195(2): 291-315
    [27] Höffgen K. Learning and robust learning of product distributions. In: Proceedings of 6th Annual Conference on Computational Learning Theory. New York, USA: ACM, 1993. 77-83
    [28] Kullback S, Leibler R. On information and sufficiency. Annals of Mathematical Statistics, 1951, 22(1): 79-86
  • 加载中
计量
  • 文章访问数:  2021
  • HTML全文浏览量:  55
  • PDF下载量:  1084
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-30
  • 修回日期:  2013-12-03
  • 刊出日期:  2014-07-20

目录

    /

    返回文章
    返回