2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MTPM和DPM的多无人机协同广域目标搜索滚动时域决策

沈东 魏瑞轩 祁晓明 关旭宁

沈东, 魏瑞轩, 祁晓明, 关旭宁. 基于MTPM和DPM的多无人机协同广域目标搜索滚动时域决策. 自动化学报, 2014, 40(7): 1391-1403. doi: 10.3724/SP.J.1004.2014.01391
引用本文: 沈东, 魏瑞轩, 祁晓明, 关旭宁. 基于MTPM和DPM的多无人机协同广域目标搜索滚动时域决策. 自动化学报, 2014, 40(7): 1391-1403. doi: 10.3724/SP.J.1004.2014.01391
SHEN Dong, WEI Rui-Xuan, QI Xiao-Ming, GUAN Xu-Ning. Receding Horizon Decision Method Based on MTPM and DPM for Multi-UAVs Cooperative Large Area Target Search. ACTA AUTOMATICA SINICA, 2014, 40(7): 1391-1403. doi: 10.3724/SP.J.1004.2014.01391
Citation: SHEN Dong, WEI Rui-Xuan, QI Xiao-Ming, GUAN Xu-Ning. Receding Horizon Decision Method Based on MTPM and DPM for Multi-UAVs Cooperative Large Area Target Search. ACTA AUTOMATICA SINICA, 2014, 40(7): 1391-1403. doi: 10.3724/SP.J.1004.2014.01391

基于MTPM和DPM的多无人机协同广域目标搜索滚动时域决策

doi: 10.3724/SP.J.1004.2014.01391
基金项目: 

中国航空科学基金(20135896027)资助

详细信息
    作者简介:

    沈东 空军工程大学博士研究生. 主要研究方向为多无人机协同搜索控制.E-mail:einkingmilitary@163.com

Receding Horizon Decision Method Based on MTPM and DPM for Multi-UAVs Cooperative Large Area Target Search

Funds: 

Supported by National Aviation Science Foundation of China (20135896027)

  • 摘要: 传统的协同搜索决策方法在目标引导和机间协同方面存在不足. 研究建立了基于分布概率预测的目标概率图(Target probability map,TPM)初始化方法和基于贝叶斯准则的目标概率图动态更新方法,形成了修正目标概率图(Modified TPM,MTPM)及其运算机理.考虑对任务子区域进行可控回访,定义了数字信息素图(Digital pheromone map,DPM),建立了数字信息素图使用方法及更新机理.设计了基于MTPM和DPM的寻优指标,建立了基于滚动时域控制的协同搜索决策方法(MTPM-DPM-RHC method,MDR).仿真表明: 1) MTPM能有效降低对目标的虚警率和漏检率;2) DPM能有效实现对任务区域可控回访;3) MDR方法的遍历能力、重访能力和目标搜索效率均优于已有方法.
  • [1] Office of the Secretary of Defense. Unmanned Aircraft Systems Roadmap 2005-2030. Washington D.C.: Department of Defense, 2005
    [2] Office of the Secretary of Defense. Unmanned Systems Roadmap 2007-2032. Washington D.C.: Department of Defense, 2007
    [3] Office of the Under Secretary of Defense. Defense Science Board Study on Unmanned Aerial Vehicles and Uninhabited Combat Aerial Vehicles. Washington D.C.: Office of the Under Secretary of Defense for Acquisition, Technology, and Logistics, 2004
    [4] Office of the Under Secretary of Defense. Defense Science Board Study on Unmanned Aerial Vehicles and Uninhabited Combat Aerial Vehicles. Washington D.C. Department of Defense, 2004
    [5] Yang Li-Feng. Take perspective in the future UAV battle from deployment of the global hawk in the Asian Pacific. Ground Defense Weapon, 2005, (4): 44-46 (杨黎峰. 从美军亚太部署"全球鹰"透视未来无人机战场. 地面防空武器, 2005, (4): 44-46)
    [6] Shen Yan-Hang, Zhou Zhou, Zhu Xiao-Ping. Method of cooperative control for UAVs using search theory. Journal of Northwestern Polytechnical University, 2006, 24(3): 367-370(沈延航, 周洲, 祝小平. 基于搜索理论的多无人机协同控制方法研究. 西北工业大学学报, 2006, 24(3): 367-370)
    [7] Bertuccelli L F, How J P. Robust UAV search for environments with imprecise probability maps. In: Proceedings of the 44th IEEE Conference on Decision and Control. Seville, Spain: IEEE, 2006. 5680-5685
    [8] Bertuccelli L F, How J P. Search for dynamic targets with uncertain probability maps. In: Proceedings of the 2006 American Control Conference. Minneapolis Minnesota, USA: IEEE, 2006. 737-742
    [9] Tian Jing, Chen Yan, Shen Lin-Cheng. Cooperative search algorithm for multi-UAVs in uncertainty environment. Journal of Electronics & Information Technology, 2007, 29(10): 2325-2328(田菁, 陈岩, 沈林成. 不确定环境中多无人机协同搜索算法. 电子与信息学报, 2007, 29(10): 2325-2328)
    [10] Peng Hui, Shen Lin-Cheng, Zhu Hua-Yong. Multiple UAVs cooperative area search based on distributed model predictive control. Chinese Journal of Aeronautics, 2010, 31(3): 593-601 (彭辉, 沈林成, 朱华勇. 基于分布式模型预测控制的多UAV协同区域搜索. 航空学报, 2010, 31(3): 593-601)
    [11] Sauter J A, Matthews R, van Dyke Parunak H, Brueckner S A. Demonstration of digital pheromone swarming control of multiple unmanned air vehicles. In: Proceedings of the AIAA Infotech@Aerospace 2005 Conference and Exhibit. Virginia: AIAA, 2005. 1-8
    [12] Erignac C A. An exhaustive swarming search strategy based on distributed pheromone maps. In: Proceedings of AIAA Infotech@Aerospace 2007 Conference and Exhibit. California: AIAA, 2007. 1-16
    [13] Peng Hui. Research on Distributed Cooperative Area Searching of Multiple Unmanned Aerial Vehicles [Ph.D. dissertation], National University of Defense Technology, China, 2009. 58-59 (彭辉. 分布式多无人机协同区域搜索中的关键问题研究 [博士学位论文], 国防科技大学, 中国, 2009. 58-59)
    [14] Shen W M, Will P, Galstyan A, Chuong C M. Hormone-inspired self-organization and distributed control of robotic swarms. Autonomous Robots, 2004, 17(1): 93-105
    [15] Shen Dong, Wei Rui-Xuan. Digital-pheromone-based control method for UAV swarm search. System Engineering and Electronics, 2013, 35(3): 591-596 (沈东, 魏瑞轩. 基于数字信息素的无人机集群搜索控制方法. 系统工程与电子技术, 2013, 35(3): 591-596)
    [16] Varela G, Caamamo P, Orjales F, Deibe A. Swarm intelligence based approach for real time UAV team coordination in search operations. In: Proceedings of the 3rd World Congress on Nature and Biologically Inspired Computing. Salamanca: IEEE, 2011. 365-370
    [17] Oh S H, Suk J H. Evolutionary controller design for area search using multiple UAVs with minimum altitude maneuver. Journal of Mechanical Science and Technology, 2013, 27(2): 541-548
    [18] Xie Shao-Rong, Ye Zhou-Hao, Luo Jun. Cooperative searching for ground targets with multiple UAVs in unknown region. Journal of Convergence Information Technology, 2012, 7(23): 384-392
    [19] Tomic T, Schmid K, Lutz P, Domel A, Kassecker M, Mair E, Grixa I, Ruess F, Suppa M, Burschka D. Toward a fully autonomous UAV: research platform for indoor and outdoor urban search and rescue. IEEE Robotics and Automation Magazine, 2012, 19(3): 46-56
  • 加载中
计量
  • 文章访问数:  2208
  • HTML全文浏览量:  146
  • PDF下载量:  1043
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-14
  • 修回日期:  2013-10-09
  • 刊出日期:  2014-07-20

目录

    /

    返回文章
    返回