2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有Markov跳跃参数的一类随机非线性系统逆最优增益设计

李桂林 王传锐 季海波

李桂林, 王传锐, 季海波. 具有Markov跳跃参数的一类随机非线性系统逆最优增益设计. 自动化学报, 2014, 40(7): 1285-1294. doi: 10.3724/SP.J.1004.2014.01285
引用本文: 李桂林, 王传锐, 季海波. 具有Markov跳跃参数的一类随机非线性系统逆最优增益设计. 自动化学报, 2014, 40(7): 1285-1294. doi: 10.3724/SP.J.1004.2014.01285
LI Gui-Lin, WANG Chuan-Rui, JI Hai-Bo. Inverse Optimal Gain Assignment Control for a Class of Stochastic Nonlinear Systems with Markovian Jump Parameters. ACTA AUTOMATICA SINICA, 2014, 40(7): 1285-1294. doi: 10.3724/SP.J.1004.2014.01285
Citation: LI Gui-Lin, WANG Chuan-Rui, JI Hai-Bo. Inverse Optimal Gain Assignment Control for a Class of Stochastic Nonlinear Systems with Markovian Jump Parameters. ACTA AUTOMATICA SINICA, 2014, 40(7): 1285-1294. doi: 10.3724/SP.J.1004.2014.01285

具有Markov跳跃参数的一类随机非线性系统逆最优增益设计

doi: 10.3724/SP.J.1004.2014.01285
基金项目: 

国家自然科学基金(61273090)资助

详细信息
    作者简介:

    王传锐 中国科学技术大学自动化系博士研究生. 2009年获得西北工业大学数学与应用专业学士学位. 主要研究方向为非线性控制.E-mail:hugh@mail.ustc.edu.cn

Inverse Optimal Gain Assignment Control for a Class of Stochastic Nonlinear Systems with Markovian Jump Parameters

Funds: 

Supported by National Natural Science Foundation of China (61273090)

  • 摘要: 研究了一类随机非线性系统的逆最优增益设计问题,系统中除了方差未知的Wiener噪声之外,还含有Markov跳跃参数. 首先,给出此类系统逆最优增益设计问题可解的一个充分条件. 其次,针对一类具有严格反馈形式的随机非线性系统,利用积分反推法,给出了依概率全局渐近稳定和逆最优控制策略的设计方法. 其中,所设计的Lyapunov函数和控制策略与模态显式无关,克服了由于Markov跳跃模态引起的耦合项所带来的设计困难. 最后,通过仿真验证了控制策略的有效性.
  • [1] Mariton M. Jump Linear Systems in Automatic Control. New York: Marcel Dekker, 1990. 56-72
    [2] Mao X R, Yuan C G. Stochastic Differential Equations with Markovians Switching. London: Imperial College Press, 2006. 49-104
    [3] Huang H, Feng G, Chen X P. Stability and stabilization of Markovian jump systems with time delay via new Lyapunov functionals. IEEE Transactions on Circuits and Systems, 2012, 59(10): 2413-2421
    [4] Cong Shen, Zhang Hai-Tao, Zou Yun. A new exponential stability condition for delayed systems with Markovian switching. Acta Automatica Sinica, 2010, 36(7): 1025-1029(丛屾, 张海涛, 邹云. 具有状态时滞的Markov切换系统的指数稳定性新结果. 自动化学报, 2010, 36(7): 1025-1029)
    [5] Kong Shu-Lan, Zhang Zhao-Sheng. Optimal control of stochastic system with Markovian jumping and multiplicative Noises. Acta Automatica Sinica, 2012, 38(7): 1113-1118(孔淑兰, 张召生. 带马尔科夫跳和乘积噪声的随机系统的最优控制. 自动化学报, 2012, 38(7): 1113-1118)
    [6] Bolzern P, Colaneri P, De Nicolao G. Almost sure stability of Markov jump linear systems with deterministic switching. IEEE Transactions on Automatic Control, 2013, 58(1): 209 -214
    [7] Luan X L, Zhao S Y, Liu F. H∞ control for discrete-time Markov jump systems with uncertain transition probabilities. IEEE Transactions on Automatic Control, 2013, 58(6): 1566-1572
    [8] Zhao P, Kang Y, Zhai D H. On input-to-state stability of stochastic nonlinear systems with Markovian jumping parameters. International Journal of Control, 2012, 85(4): 343 -349
    [9] Song M K, Park J B, Joo Y H. Stability analysis and synthesis of Markovian jump nonlinear systems with incomplete transition descriptions via fuzzy control. In: Proceedings of the 2011 IEEE International Conference on Fuzzy Systems. Taipei, China: IEEE, 2011. 1007-1012
    [10] Zhao Ping, Kang Yu. Stabilization control for a class of two-dimensional Markovian jumping nonlinear systems with time-delay. Journal of Systems Science and Mathematical Sciences, 2007, 27(3): 451-463(赵平, 康宇. 一类二维Markov 跳跃非线性时滞系统的镇定控制. 统科学与数学, 2007, 27(3): 451-463)
    [11] Wu Z J, Xie X J, Shi P, Xia Y Q. Backstepping controller design for a class of stochastic nonlinear systems with Markovian switching. Automatica, 2009, 45(4): 997-1004
    [12] Wu Z J, Yang J, Shi P. Adaptive tracking for stochastic nonlinear systems with Markovian switching. IEEE Transactions on Automatic Control, 2010, 55(9): 2135-2141
    [13] Freeman R A, Kokotovic P V. Inverse optimality in robust stabilization. SIAM Journal on Control and Optimization, 1996, 34(4): 1365-1391
    [14] Krstić M, Tsiotras P. Inverse optimal stabilization of a rigid spacecraft. IEEE Transactions on Automatic Control, 1999, 44(5): 1042-1049
    [15] Krstić M, Li Z H. Inverse optimal design of input-to-state stabilizing nonlinear controllers. IEEE Transactions on Automatic Control, 1998, 43(3): 336-350
    [16] Wang Chuan-Rui, Wang Xing-Hu, Ji Hai-Bo. Inverse optimal gain assignment control for Markovian jump nonlinear systems. Control Theory and Applications, 2013, 30(5): 537 -542(王传锐, 王兴虎, 季海波. Markov 跳跃非线性系统逆最优增益设计. 控制理论与应用, 2013, 30(5): 537-542)
    [17] Florchinger P. A universal formula for the stabilization of control stochastic differential equations. Stochastic Analysis and Applications, 1993, 11(12): 155-162
    [18] Deng H, Krstić M, Williams R J. Stabilization of stochastic nonlinear systems driven by noise of unknown covariance. IEEE Transactions on Automatic Control, 2001, 46(8): 1237-1253
    [19] Krstić M, Deng H. Stabilization of Nonlinear Uncertain Systems. New York: Springer, 1998. 47-85
    [20] Zhang Ping, Fang Yang-Wang, Hui Xiao-Bin, Liu Xin-Ai, Li Liang. Near optimal strategy for nonlinear stochastic differential games based on the technique of statistical linearization. Acta Automatica Sinica, 2013, 39(4): 390-399(张平, 方洋旺, 惠晓滨, 刘新爱, 李亮. 基于统计线性化的随机非线性微分对策逼近最优策略. 自动化学报, 2013, 39(4): 390-399)
    [21] Hardy G H, Littlewood J E, Pólya G. Inequalities (2nd edition). Cambridge: Cambridge University Press, 1989. 111-113
    [22] Zhao L Q, Xi F B. Explicit conditions for asymptotic stability of stochastic Liénard-type equations with Markovian switching. Journal of Mathematical Analysis and Applications, 2008, 348(1): 267-273
  • 加载中
计量
  • 文章访问数:  1783
  • HTML全文浏览量:  110
  • PDF下载量:  814
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-25
  • 修回日期:  2013-12-03
  • 刊出日期:  2014-07-20

目录

    /

    返回文章
    返回