[1]
|
Wu X D, Kumar V, Quinlan J R, Ghosh J, Yang Q, Motoda H. Top 10 algorithms in data mining. Knowledge and Information Systems, 2008, 14(1): 1-37
|
[2]
|
López J A O, Ochoa J A C, Trinidad J F M. Prototype selection methods. Computacióny Sistemas, 2010, 13(4): 449-462
|
[3]
|
Verbiesta N, Cornelisa C, Herrerab F. FRPS: a fuzzy rough prototype selection method. Pattern Recognition, 2013, 46(10): 2770-2782
|
[4]
|
Rico J R, Iňesta J M. New rank methods for reducing the size of the training set using the nearest neighbor rule. Pattern Recognition Letters, 2012, 33(5): 654-660
|
[5]
|
Angiulli F. Fast nearest neighbor condensation for large data sets classification. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(11): 1450-1464
|
[6]
|
Chang F, Lin C C, Lu C J. Adaptive prototype learning algorithms: theoretical and experimental studies. Journal of Machine Learning Research, 2006, 7: 2125-2148
|
[7]
|
García S, Derrac J, Cano J R. Prototype selection for nearest neighbor classification: taxonomy and empirical study. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(2): 417-435
|
[8]
|
Wu Y Q, Lanakiev K, Govindaraju V. Improved k-nearest neighbor classification. Pattern Recognition, 2002, 35(10): 2311-2318
|
[9]
|
Olvera-López J A, Carrasco-Ochoa J A, Martínez-Trinidad J F. A new fast prototype selection method based on clustering. Pattern Analysis and Applications, 2010, 13(2): 131-141
|
[10]
|
Mitani Y, Hamamoto Y. A local mean-based nonparametric classifier. Pattern Recognition Letters, 2006, 27(10): 1151-1159
|
[11]
|
Brown T A, Koplowitz J. The weighted nearest neighbour rule for class dependent sample size. IEEE Transaction on Information Theory, 1979, 25(5): 617-619
|
[12]
|
Han E H, Karypis G. Centroid-Based Document Classification: analysis & Experimental Results. Technical Report 00-017, Computer Science, University of Minnesota, 2000
|
[13]
|
Zeng Y, Yang Y P, Zhao L. Nonparametric classification based on local mean and class statistics. Expert Systems with Applications, 2009, 36(4): 8443-8448
|
[14]
|
Brighton H, Mellish C. Advances in instance selection for instance-based learning algorithms. Data Mining and Knowledge Discovery, 2002, 6(2): 153-172
|
[15]
|
Wang X Z, Wu B, He Y L. An iterative algorithm for sample selection based on the reachable and coverage. In: Proceedings of the IEEE International Conference on Communications Technology and Applications. Beijing, China: IEEE, 2009. 521-526
|
[16]
|
Theodoridis S, Koutroumbas K. Pattern Recognition (Third Edition). New York: Elsevier, chapter 5, 2006
|
[17]
|
Xu Y, Shen F R, Zhao J X. An incremental learning vector quantization algorithm for pattern classification. Neural Computing and Applications, 2012, 21(6): 1205-1215
|