2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于视觉显著性的两阶段采样突变目标跟踪算法

江晓莲 李翠华 李雄宗

江晓莲, 李翠华, 李雄宗. 基于视觉显著性的两阶段采样突变目标跟踪算法. 自动化学报, 2014, 40(6): 1098-1107. doi: 10.3724/SP.J.1004.2014.01098
引用本文: 江晓莲, 李翠华, 李雄宗. 基于视觉显著性的两阶段采样突变目标跟踪算法. 自动化学报, 2014, 40(6): 1098-1107. doi: 10.3724/SP.J.1004.2014.01098
JIANG Xiao-Lian, LI Cui-Hua, LI Xiong-Zong. Saliency Based Tracking Method for Abrupt Motions via Two-stage Sampling. ACTA AUTOMATICA SINICA, 2014, 40(6): 1098-1107. doi: 10.3724/SP.J.1004.2014.01098
Citation: JIANG Xiao-Lian, LI Cui-Hua, LI Xiong-Zong. Saliency Based Tracking Method for Abrupt Motions via Two-stage Sampling. ACTA AUTOMATICA SINICA, 2014, 40(6): 1098-1107. doi: 10.3724/SP.J.1004.2014.01098

基于视觉显著性的两阶段采样突变目标跟踪算法

doi: 10.3724/SP.J.1004.2014.01098
基金项目: 

国家自然科学基金(61373077),国防基础科研计划(B0110155),国防科技重点实验室基金(9140C30211ZS8),高等学校博士学科点专项科研基金(20110121110020) 资助

详细信息
    作者简介:

    江晓莲 厦门大学信息科学与技术学院硕士研究生. 主要研究方向为计算机视觉跟踪. E-mail:yixi0205@gmail.com

Saliency Based Tracking Method for Abrupt Motions via Two-stage Sampling

Funds: 

Supported by National Natural Science Foundation of China (61373077), National Defense Basic Scientific Research Program of China (B0110155), National Defense Science and Technology Key Laboratory Foundation (9140C30211ZS8), and Specialized Research Fund for the Doctoral Program of Higher and Education of China (20110121110020)

  • 摘要: 针对运动突变目标视觉跟踪问题,提出一种基于视觉显著性的两阶段采样跟踪算法.首先,将视觉显著性信息引入到Wang-Landau蒙特卡罗(Wang-Landau Monte Carlo,WLMC)跟踪算法中,设计了结合显著性先验的接受函数,利用子区域的显著性值来引导马尔可夫链的构造,通过增大目标出现区粒子的接受概率,提高采样效率;其次,针对运动序列中平滑与突变运动共存的特点,建立两阶段采样模型.其中第一阶段对目标当前运动类型进行判定,第二阶段则根据判定结果采用相应算法.突变运动采用基于视觉显著性的WLMC算法,平滑运动采用双链马尔可夫链蒙特卡罗(Marko chain Monte Carlo,MCMC)算法,以此完成目标跟踪,提高算法的鲁棒性.该算法既避免了目标在平滑运动时全局采样导致精度下降的缺点,又能在目标发生运动突变时有效捕获目标.实验结果表明,该算法不仅能有效处理运动突变目标的跟踪问题,在典型图像序列上也具有良好的鲁棒性.
  • [1] Yilmaz A, Javed O, Shah M. Object tracking: a survey. ACM Computing Surveys, 2006, 38(4): 1-45, Article13
    [2] Hou Zhi-Qiang, Han Chong-Zhao. A survey of visual tracking. Acta Automatica Sinica, 2006, 32(4): 603-617(侯志强, 韩崇昭. 视觉跟踪技术综述. 自动化学报, 2006, 32(4): 603-617)
    [3] Cai Y Z, de Freitas N, Little J J. Robust visual tracking for multiple targets. In: Proceeding of the 9th European Conference on Computer Vision. Graz, Austria: Springer-Verlag, 2006, 107-118
    [4] Isard M, Blake A. ICONDENSATION: unifying low-level and high-level tracking in a stochastic framework. In: Proceeding of European Conference on Computer Vision. Freiburg, Germany: Springer-Verlag, 1998, 893-908
    [5] Wang Xiao, Han Chong-Zhao. A multiple model particle filter for maneuvering target tracking based on composite sampling. Acta Automatica Sinica, 2013, 39(7): 1152-1156(王晓, 韩崇昭. 基于混合采样的多模型机动目标跟踪算法. 自动化学报, 2013, 39(7): 1152-1156)
    [6] Zuo Jun-Yi, Zhang Yi-Zhe, Liang Yan. Particle filter based on adaptive part Resampling. Acta Automatica Sinica, 2012, 38(4): 647-652(左军毅, 张怡哲, 梁彦. 自适应不完全重采样粒子滤波器. 自动化学报, 2012, 38(4): 647-652)
    [7] Khan Z, Balch T, Dellaert F. MCMC-based particle filtering for tracking a variable number of interacting targets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(11): 1805-1819
    [8] Smith K, Gatica-Perez D, Odobez J M. Using particles to track varying numbers of interacting people. In: Proceeding of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA: IEEE, 2005. 962-969
    [9] Zhao T, Nevatia R. Tracking multiple humans in crowded environment. In: Proceeding of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC, USA: IEEE, 2004. II-406-II-413
    [10] Kwon J, Lee K. Visual tracking decomposition. In: Proceeding of 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE, 2010. 1269-1276
    [11] Kwon J, Lee K M. Tracking by sampling trackers. In: Proceeding of the 2011 International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011. 1195-1202
    [12] Roberts G O, Rosenthal J S. Examples of adaptive MCMC. Journal of Computational and Graphical Statistics, 2009, 18(2): 349-367
    [13] Zhou X Z, Lu Y. Abrupt motion tracking via adaptive stochastic approximation Monte Carlo sampling. In: Proceeding of IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE, 2010. 1847-1854
    [14] Wang F G, Landau D P. Efficient, multiple-range random walk algorithm to calculate the density of states. Physical Review Letters, 2001, 86(10): 2050-2053
    [15] Kwon J, Lee K M. Tracking of abrupt motion using Wang-Landau Monte Carlo estimation. In: Proceeding of the 10th European Conference on Computer Vision. Marseille, France: Springer Verlag, 2008. 387-400
    [16] Kwon J, Lee K. Wang-Landau Monte Carlo-based tracking methods for abrupt motions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(4): 1011-1024
    [17] Perazzi F, Krahenbuhl P, Pritch Y, Hornung A. Saliency filters: contrast based filtering for salient region detection. In: Proceeding of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, Rhode Island, USA: IEEE, 2012. 733-740
    [18] Ma Ru-Ning, Tu Xiao-Po, Ding Jun-Di, Yang Jing-Yu. To evaluate salience map towards popping out visual objects. Acta Automatica Sinica, 2012, 38(5): 870-876(马儒宁, 涂小坡, 丁军娣, 杨静宇. 视觉显著性凸显目标的评价. 自动化学报, 2012, 38(5): 870-876)
    [19] Guo Ying-Chun, Yuan Hao-Jie, Wu Peng. Image saliency detection based on local and regional features. Acta Automatica Sinica, 2013, 39(8): 1214-1224(郭迎春, 袁浩杰, 吴鹏. 基于Local特征和Regional特征的图像显著性检测. 自动化学报, 2013, 39(8): 1214-1224)
    [20] Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259
    [21] Hou X D, Zhang L. Saliency detection: a spectral residual approach. In: Proceeding of IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, Minnesota, USA: IEEE, 2007. 1-8
    [22] Xie Yu-Lin. Image Saliency Detection based on Bayesian Model [Master dissertation], Dalian University of Technology, China, 2011 (谢玉琳. 贝叶斯框架下的图像显著性检测 [硕士学位论文], 大连理工大学, 中国, 2011)
    [23] Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282
    [24] Ross D A, Lim J, Lin R S, Yang M H. Incremental learning for robust visual tracking. International Journal of Computer Vision, 2008, 77(1-3): 125-141
    [25] Santner J, Leistner C, Saffari A, Pock T, Bischof H. PROST: parallel robust online simple tracking. In: Proceeding of IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE, 2010. 723-730
    [26] Adam A, Rivlin E, Shimshoni I. Robust fragments-based tracking using the integral histogram. In: Proceeding of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, NY, USA: IEEE, 2006. 798-805
    [27] Mei X, Ling H B. Robust visual tracking and vehicle classification via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2259-2272
    [28] Babenko B, Yang M H, Belongie S. Robust object tracking with online multiple instance learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632
    [29] Kalal Z, Mikolajczyk K, Matas J. Tracking-learning-detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409-1422
  • 加载中
计量
  • 文章访问数:  2370
  • HTML全文浏览量:  51
  • PDF下载量:  5108
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-02
  • 修回日期:  2013-10-16
  • 刊出日期:  2014-06-20

目录

    /

    返回文章
    返回