[1]
|
Scott S H. Converting thoughts into action. Nature, 2006, 442(7099): 141-142
|
[2]
|
Wolpaw J R, Birbaumer N, Heetderks W J, McFarland D J, Peckham P H, Schalk G, Donchin E, Quatrano L A, Robinson C J, Vaughan T M. Brain-computer interface technology: a review of the first international meeting. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2): 164-173
|
[3]
|
Wang Xing-Yu, Jin Jing, Zhang Yu, Wang Bei. Brain control: human-computer integration control based on brain-computer interface. Acta Automatica Sinica, 2013, 39(3): 208-221(王行愚, 金晶, 张宇, 王蓓. 脑控: 基于脑-机接口的人机融合控制. 自动化学报, 2013, 39(3): 208-221)
|
[4]
|
Fu Yun-Fa, Wang Yue-Chao, Li Hong-Yi, Xu Bao-Lei, Li Yong-Cheng. Direct brain-controlled robot interface technology. Acta Automatica Sinica, 2012, 38(8): 1229-1246(伏云发, 王越超, 李洪谊, 徐保磊, 李永程. 直接脑控机器人接口技术. 自动化学报, 2012, 38(8): 1229-1246)
|
[5]
|
Decety J. The neurophysiological basis of motor imagery. Behavioural Brain Research, 1996, 77(1-2): 45-52
|
[6]
|
Pfurtscheller G, Neuper C. Motor imagery and direct brain-computer communication. Proceedings of the IEEE, 2001, 89(7): 1123-1134
|
[7]
|
Cunnington R, Iansek R, Bradshaw J L, Phillips J G. Movement-related potentials associated with movement preparation and motor imagery. Experimental Brain Research, 1996, 111(3): 429-436
|
[8]
|
Pfurtscheller G, Lopes da Silva F H. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology, 1999, 110(11): 1842-1857
|
[9]
|
Neuper C, Wörtz M, Pfurtscheller G. ERD/ERS patterns reflecting sensorimotor activation and deactivation. Progress in Brain Research, 2006, 159: 211-222
|
[10]
|
Shibasaki H, Hallett M. What is the bereitschaftspotential? Clinical Neurophysiology, 2006, 117(11): 2341-2356
|
[11]
|
do Nascimento O F, Nielsen K D, Voigt M. Movement related parameters modulate cortical activity during imaginary isometric plantar-flexions. Experimental Brain Research, 2006, 171(1): 78-90
|
[12]
|
Pfurtscheller G, Neuper C, Flotzinger D, Pregenzer M. EEG-based discrimination between imagination of right and left hand movement. Electroencephalography and Clinical Neurophysiology, 1997, 103(6): 642-651
|
[13]
|
Neuper C, Schlögl A, Pfurtscheller G. Enhancement of left-right sensorimotor EEG differences during feedback-regulated motor imagery. Journal of Clinical Neurophysiology, 1999, 16(4): 373-382
|
[14]
|
Schlösgl A, Lee F, Bischof H, Pfurtscheller G. Characterization of four class motor imagery EEG data for the BCI-competition 2005. Journal of Neural Engineering, 2005, 2(4): L14-L22
|
[15]
|
Gu Y, Dremstrup K, Farina D. Single-trial discrimination of type and speed of wrist movements from EEG recordings. Clinical Neurophysiology, 2009, 120(8): 1596-1600
|
[16]
|
Gu Y, Farina D, Murguialday A R, Dremstrup K, Montoya P, Birbaumer N. Offline identification of imagined speed of wrist movements in paralyzed ALS patients from single-trial EEG. Frontiers in Neuroscience, 2009, 3: 62
|
[17]
|
Gu Y, do Nascimento O F, Lucase M F, Farina D. Identification of task parameters from movement-related cortical potentials. Medical Biological Engineering Computer, 2009, 47(12): 1257-1264
|
[18]
|
do Nascimento O F, Farina D. Movement-related cortical potentials allow discrimination of rate of torque development in imaginary isometric plantar flexion. IEEE Transactions on Biomedical Engineering, 2008, 55(11): 2675-2678
|
[19]
|
Farina D, do Nascimento O F, Lucas M F, Doncarli C. Optimization of wavelets for classification of movement-related cortical potentials generated by variation of force-related parameters. Journal of Neuroscience Methods, 20078, 162(1-2): 357-363
|
[20]
|
Fu Y F, Xu B L, Li Y C, Wang Y C, Li H Y, Yu Z T. The single-trial decoding of imagined grip force parameters involved left and right hands based on movement-related cortical potentials. Chinese Science Bulletin, 2014, 59(16): 1907-1916
|
[21]
|
Yuan H, Perdoni C, He B. Relationship between speed and EEG activity during imagined and executed hand movements. Journal of Neural Engineering, 2010, 7(2): 26001
|
[22]
|
Romero D H, Lacourse M G, Lawrencea M G, Schandlera S, Cohen M J. Event-related potentials as a function of movement parameter variations during motor imagery and isometric action. Behavioural Brain Research, 2000, 117(1-2): 83-96
|
[23]
|
Klem G H, Lüders H O, Jasper H H, Elger C E. The ten-twenty electrode system of the International Federation of Clinical Neurophysiology. Electroencephalography Clinical Neurophysiology, 1999, 52(S2): 3-6
|
[24]
|
Yang Shu-Ying. Pattern Recognition and Intelligent Computing: Matlab Technology Realization (2nd Edition). Beijing: Publishing House of Electronics Industry, 2011 (杨淑莹. 模式识别与智能计算——Matlab技术实现. 第2版. 北京: 电子工业出版社, 2011)
|
[25]
|
Slobounov S M, Ray W J. Movement-related potentials with reference to isometric force output in discrete and repetitive tasks. Experimental Brain Research, 1998, 123(4): 461-473
|
[26]
|
Shibasaki H, Barrett G, Halliday E, Halliday A M. Cortical potentials associated with voluntary foot movement in man. Electroencephalography and Clinical Neurophysiology, 1981, 52(6): 507-516
|
[27]
|
do Nascimento O F, Nielsen K D, Voigt M. Relationship between plantar-flexor torque generation and the magnitude of the movement-related potentials. Experimental Brain Research, 2005, 160(2): 154-165
|