2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用改进的人工蜂群算法设计AVR系统最优分数阶PID控制器

张冬丽 唐英干 关新平

张冬丽, 唐英干, 关新平. 用改进的人工蜂群算法设计AVR系统最优分数阶PID控制器. 自动化学报, 2014, 40(5): 973-979. doi: 10.3724/SP.J.1004.2014.00973
引用本文: 张冬丽, 唐英干, 关新平. 用改进的人工蜂群算法设计AVR系统最优分数阶PID控制器. 自动化学报, 2014, 40(5): 973-979. doi: 10.3724/SP.J.1004.2014.00973
ZHANG Dong-Li, TANG Ying-Gan, GUAN Xin-Ping. Optimum Design of Fractional Order PID Controller for an AVR System Using an Improved Artificial Bee Colony Algorithm. ACTA AUTOMATICA SINICA, 2014, 40(5): 973-979. doi: 10.3724/SP.J.1004.2014.00973
Citation: ZHANG Dong-Li, TANG Ying-Gan, GUAN Xin-Ping. Optimum Design of Fractional Order PID Controller for an AVR System Using an Improved Artificial Bee Colony Algorithm. ACTA AUTOMATICA SINICA, 2014, 40(5): 973-979. doi: 10.3724/SP.J.1004.2014.00973

用改进的人工蜂群算法设计AVR系统最优分数阶PID控制器

doi: 10.3724/SP.J.1004.2014.00973

Optimum Design of Fractional Order PID Controller for an AVR System Using an Improved Artificial Bee Colony Algorithm

Funds: 

Manuscript received June 19, 2013; accepted November 12, 2013 Supported by National Natural Science Foundation of China (61273260), Specialized Research Fund for the Doctoral Program of Higher Education of China (20121333120010), Natural Scientific Research Foundation of the Higher Education Institutions of Hebei Province (2010165), the Major Program of the National Natural Science Foundation of China (61290322), Foundation of Key Laboratory of System Control and Information Processing, Ministry of Education (SCIP2012008), and Science and Technology Research and Development Plan of Qinhuangdao City (2012021A041)

More Information
    Corresponding author: ZHANG Dong-Li
  • 摘要: 分数阶PID控制器(FOPID)是标准PID控制器的一般形式.与PID控制器相比,FOPID有更多的参数,其参数整定也更复杂.本文提出一种基于环交换邻域和混沌的人工蜂群算法(CNC-ABC),用于FOPID控制器的参数整定.CNC-ABC算法由于应用了环交换邻域,增加了解的搜索范围,从而能加快人工蜂群算法的收敛速度;同时利用混沌的遍历性使算法跳出局部最优解.用CNC-ABC算法优化AVR系统的FOPID控制器的参数.仿真结果表明,CNC-ABC算法整定的FOPID控制器比其它FOPID及PID控制器有较好的性能.
  • [1] O'Dwyer A. Handbook of PI and PID Controller Tuning Rules. London: Imperial College Press, 2009
    [2] Podlubny I. Fractional-order systems and PIλDμ controllers. IEEE Transactions on Automatic Control, 1999, 4(1): 208-214
    [3] Valério D, Da Costa J S. Tuning of fractional PID controllers with Ziegler-Nichols-type rules. Signal Processing, 2006, 86(10): 2771-2784
    [4] Cervera J, Banos A, Monje C A, Vinagre B M. Tuning of fractional PID controllers by using QFT. In: Proceedings of the 2006 IEEE Conference on Industrial Electronics. Paris, France: IEEE, 2006. 5402-5407
    [5] Pan I, Das S. Chaotic multi-objective optimization based design of fractional order PIλDμ controller in AVR system. International Journal of Electrical Power and Energy Systems, 2012, 43(1): 393-407
    [6] Biswas A, Das S, Abraham A, Dasgupta S. Design of fractional-order PIλDμ controllers with an improved differential evolution. Engineering Applications of Artificial Intelligence, 2009, 22(2): 343-350
    [7] Zamani M, Karimi-Ghartemani M, Sadati N, Parniani M. Design of a fractional order PID controller for an AVR using particle swarm optimization. Control Engineering Practice, 2009, 17(12): 1380-1387
    [8] Tang Y G, Cui M Y, Hua C C, Li L X, Yang Y X. Optimum design of fractional order PIλDμ controller for AVR system using chaotic ant swarm. Expert Systems with Applications, 2012, 39(8): 6887-6896
    [9] Karaboga D. An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical Report TR06, Erciyes University Press, Erciyes, 2005
    [10] Akay B, Karaboga D. A modified artificial bee colony algorithm for real-parameter optimization. Information Sciences, 2012, 192: 120-142
    [11] Karaboga D, Akay B. A modified artificial bee colony (ABC) algorithm for constrained optimization problems. Applied Soft Computing, 2011, 11(3): 3021-3031
    [12] Sonmez M. Artificial bee colony algorithm for optimization of truss structures. Applied Soft Computing, 2011, 11(2): 2406-2418
    [13] Gao W F, Liu S Y. A modified artificial bee colony algorithm. Computers and Operations Research, 2012, 39(3): 687-697
    [14] Rajasekhar A, Das S, Suganthan P N. Design of fractional order controller for a servohydraulic positioning system with micro artificial bee colony algorithm. In: Proceedings of the 2012 IEEE Congress on Evolutionary Computation. Brisbane, Australia: IEEE, 2012. 1-8
    [15] Karaboga D, Ozturk C. A novel clustering approach: artificial bee colony (ABC) algorithm. Applied Soft Computing, 2011, 11(1): 652-657
    [16] Pan Q K, Fatih Tasgetiren M, Suganthan P N, Chua T J. A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem. Information Sciences, 2011, 181(12): 2455-2468
    [17] Bao Li, Zeng Jian-Hu. Self-adapting search space chaos-artificial bee colony algorithm. Application Research of Computers, 2010, 27(4): 1330-1334 (in Chinese)
    [18] Lee W P, Cai W T. A novel artificial bee colony algorithm with diversity strategy. In: Proceedings of the 2011 International Conference on Natural Computation. Shanghai, China: IEEE, 2011. 1441-1444
    [19] Gao W F, Liu S Y. Improved artificial bee colony algorithm for global optimization. Information Processing Letters, 2011, 111(17): 871-882
    [20] Glover F. Ejection chains, reference structures and alternating path methods for traveling salesman problems. Discrete Applied Mathematics, 1996, 65(1-3): 223-253
    [21] Rego C. Relaxed tours and path ejections for the traveling salesman problem. European Journal of Operational Research, 1998, 106(2): 522-538
    [22] Ahuja R K, Orlin J B, Sharma D. Multi-exchange neighborhood structures for the capacitated minimum spanning tree problem. Mathematical Programming, 2001, 91(1): 71-97
    [23] Tang L X, Luo J X. A new ILS algorithm for parallel machine scheduling problems. Journal of Intelligent Manufacturing, 2006, 17(5): 609-619
    [24] Frangioni A, Necciari E, Scutellá M G. A multi-exchange neighborhood for minimum makespan parallel machine scheduling problems. Journal of Combinatorial Optimization, 2004, 8(2): 195-220
    [25] Thompson P M, Psaraftis H N. Cyclic transfer algorithm for multivehicle routing and scheduling problems. Operations Research, 1993, 41(5): 935-946
    [26] Podlubny I. Fractional Differential Equations. San Diego: Academic Press, 1999
    [27] Seeley T. The Wisdom of the Hive: the Social Physiology of Honey Bee Colonies. Harvard: Harvard University Press, 1996
    [28] Gaing Z L. A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Transactions on Energy Conversion, 2004, 19(2): 384-391
    [29] Krohling R A, Rey J P. Design of optimal disturbance rejection PID controllers using genetic algorithms. IEEE Transactions on Evolutionary Computation, 2001, 5(1): 78-82
    [30] Bode H W. Network Analysis and Feedback Amplifier Design. New Jersey: Van Nostrand Reinhold, 1956
    [31] Takyar M S, Georgiou T T. The fractional integrator as a control design element. In: Proceedings of the 46th IEEE Conference on Decision and Control. New Orleans, United States: IEEE, 2007. 239-244
    [32] Djouambi A, Charef A, Voda A. Fractional order controller based on bode's ideal transfer function. Control and Intelligent Systems, 2010, 38(2): 67-73
    [33] PetráŠI. Fractional-order feedback control of a DC motor. Journal of Electrical Engineering, 2009, 60(3): 117-128
  • 加载中
计量
  • 文章访问数:  2638
  • HTML全文浏览量:  88
  • PDF下载量:  1602
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-19
  • 修回日期:  2013-11-12
  • 刊出日期:  2014-05-20

目录

    /

    返回文章
    返回