2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向按需供给的资源需求滤波估算方法

黄翔 陈伟 宋云奎 陈志刚

黄翔, 陈伟, 宋云奎, 陈志刚. 面向按需供给的资源需求滤波估算方法. 自动化学报, 2014, 40(5): 942-951. doi: 10.3724/SP.J.1004.2014.00942
引用本文: 黄翔, 陈伟, 宋云奎, 陈志刚. 面向按需供给的资源需求滤波估算方法. 自动化学报, 2014, 40(5): 942-951. doi: 10.3724/SP.J.1004.2014.00942
HUANG Xiang, CHEN Wei, SONG Yun-Kui, CHEN Zhi-Gang. Filter Based Resource Demand Estimation for On-demand Provision. ACTA AUTOMATICA SINICA, 2014, 40(5): 942-951. doi: 10.3724/SP.J.1004.2014.00942
Citation: HUANG Xiang, CHEN Wei, SONG Yun-Kui, CHEN Zhi-Gang. Filter Based Resource Demand Estimation for On-demand Provision. ACTA AUTOMATICA SINICA, 2014, 40(5): 942-951. doi: 10.3724/SP.J.1004.2014.00942

面向按需供给的资源需求滤波估算方法

doi: 10.3724/SP.J.1004.2014.00942
基金项目: 

国家自然科学基金(61272013),广东省自然科学基金(S2013040011941)资助

详细信息
    作者简介:

    陈伟 中国科学院软件研究所助理研究员. 2013 年获得中国科学院博士学位.主要研究方向为网络分布式计算,软件工程.E-mail:wchen@otcaix.iscas.ac.cn

Filter Based Resource Demand Estimation for On-demand Provision

Funds: 

Supported by National Natural Science Foundation of China (61272013) and Guangdong Natural Science Foundation of China (S2013040011941)

  • 摘要: 随着按需供给资源使用模式的推广,软件的资源需求已成为资源优化控制的重要属性.监测和估算是目前常用的资源消耗获取方法,但监测工具难以在运行时准确度量短任务的资源需求,回归分析方法又因受到多元共线性和不确定性因素的影响,导致其取值精度下降.本文提出了一种基于Kalman滤波的资源需求估算方法.该方法建立了可度量属性集与不可度量的资源需求间的关联,并利用滤波过滤度量过程中的噪声,达到降低估算误差的目的.基准测试的结果表明,通过合理的设置滤波参数,本方法能够快速逼近真实值,且平均误差小于8%.
  • [1] Jordan M, Czajkowski G, Kouklinski K, Skinner G. Extending a J2EE server with dynamic and flexible resource management. In: Proceedings of the 2004 International Conference on Middleware. Toronto, Canada: ACM, 2004. 439-458
    [2] Binder W, Hulaas J. A portable CPU-management framework for Java. IEEE Internet Computing, 2004, 8(5): 74-83
    [3] Hulaas J, Kalas D. Monitoring of resource consumption in Java-based application servers. In: Proceedings of OpenView University Association 10th Workshop. Geneva, Switzerland: University of Geneva, 2003. 1-6
    [4] Islam S, Keung J, Lee K, Liu A. Empirical prediction models for adaptive resource provisioning in the cloud. Future Generation Computer Systems, 2012, 28(1): 155-162
    [5] Kalbasi A, Krishnamurthy D, Rolia J, Dawson S. DEC: service demand estimation with confidence. IEEE Transactions on Software Engineering, 2012, 38(3): 561-578
    [6] Teunissen P J G, Khodabandeh A. BLUE, BLUP and the Kalman filter: some new results. Journal of Geodesy, 2013, 87(5): 461-473
    [7] You Ke-You, Xie Li-Hua. Survey of recent progress in networked control systems. Acta Automatica Sinica, 2013, 39(2): 101-118(游科友, 谢立华. 网络控制系统的最新研究综述. 自动化学报, 2013, 39(2): 101-118)
    [8] Kalman R E. A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 1960, 82(1): 35-45
    [9] Tao Gui-Li, Deng Zi-Li. Self-tuning fusion Kalman filter with unknown parameters and its convergence. Acta Automatica Sinica, 2012, 38(1): 109-119(陶贵丽, 邓自立. 含未知参数的自校正融合Kalman滤波器及其收敛性. 自动化学报, 2012, 38(1): 109-119)
    [10] Lazowska E D, Zahorjan J, Graham G S, Sevcik K C. Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Upper Saddle River, NJ, USA: Prentice-Hall, 1984
    [11] Hou Zhen-Wei, Fang Hai-Tao. L 2-stability of discrete-time Kalman filter with random coefficients under incorrect covariance. Acta Automatica Sinica, 2013, 39(1): 43-52(周振威, 方海涛. 在不准确方差下带随机系数矩阵的卡尔曼滤波稳定性. 自动化学报, 2013, 39(1): 43-52)
    [12] Rao J, Wei Y D, Gong J Y, Xu C Z. QoS guarantees and service differentiation for dynamic cloud applications. IEEE Transactions on Network and Service Management, 2013, 10(1): 43-55
    [13] Malek O, Venetsanopoulos A, Alamgir L, Alirezaie J, Krishnan S. A discrete-time convergence model for proliferation-able stem cell and its estimation using Kalman filter. Journal of Bioengineer and Biomedical Sciences, 2013, 3(1): 1-10
    [14] You K Y, Xie L H. Kalman filtering with scheduled measurements. IEEE Transactions on Signal Processing, 2013, 61(6): 1520-1530
    [15] Bard Y, Shatzoff M. Statistical methods in computer performance analysis. Current Trends in Programming Methodology. New Jersey: Prentice-Hall, 1978, 3: 1-51
    [16] Han R, Guo L, Ghanem M M, Guo Y K. Lightweight resource scaling for cloud applications. In: Proceedings of the 2012 Cluster, Cloud and Grid Computing. Ottawa, CA: IEEE, 2012, 644-651
    [17] Pacifici G, Segmuller W, Spreitzer M, Tantawi A. CPU demand for web serving: measurement analysis and dynamic estimation. Performance Evaluation, 2008, 65(6-7): 531-553
    [18] Simon Spinner. Evaluating Approaches to Resource Demand Estimation [Master dissertation], University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association, Germany, 2011
    [19] Rolia J, Vetland V. Parameter estimation for performance models of distributed application systems. In: Proceedings of the 1995 Centre for Advanced Studies on Collaborative Research Conference. Toronto, CA: ACM, 1995. 54-63
    [20] Rolia J, Kalbasi A, Krishnamurthy D, Dawson S. Resource demand modeling for multi-tier services. In: Proceedings of the 1st joint WOSP/SIPEW International Conference on Performance Engineering. New York, USA: ACM, 2010. 207-216
    [21] Sun X. Estimating Resource Demands for Application Services [Master dissertation], Carleton University, Canada, 1999
    [22] Lu Y, Abdelzaher T, Lu C Y, Sha L, Liu X. Feedback control with queueing-theoretic prediction for relative delay guarantees in Web servers. In: Proceedings of the 2003 Real Time and Embedded Technology and Applications Symposium. Toronto, Canada: IEEE, 2003. 208-217
    [23] Kraft S, Pacheco-Sanchez S, Casale G, Dawson S. Estimating service resource consumption from response time measurements. In: Proceedings of the 2009 Performance Evaluation Methodologies and Tools. Coleraine, UK: ACM, 2009, 1-10
    [24] Menasce D. Computing missing service demand parameters for performance models. In: Proceedings of the 2008 Computer Measurement Group. Las Vegas, USA: CiteSeer, 2008. 241-248
    [25] Zheng T, Woodside M. Performance model estimation and tracking using optimal filters. IEEE Transactions on Software Engineering, 2008, 34(3): 391-406
    [26] Woodside M, Zhen T, Litoiu M. Service system resource management based on a tracked layered performance model. In: Proceedings of the 2006 International Conference on Autonomic Computing. Washington, USA: IEEE, 2006. 175-184
  • 加载中
计量
  • 文章访问数:  1744
  • HTML全文浏览量:  54
  • PDF下载量:  677
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-22
  • 修回日期:  2013-08-22
  • 刊出日期:  2014-05-20

目录

    /

    返回文章
    返回