2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2DPCA-SIFT:一种有效的局部特征描述方法

颜雪军 赵春霞 袁夏

颜雪军, 赵春霞, 袁夏. 2DPCA-SIFT:一种有效的局部特征描述方法. 自动化学报, 2014, 40(4): 675-682. doi: 10.3724/SP.J.1004.2014.00675
引用本文: 颜雪军, 赵春霞, 袁夏. 2DPCA-SIFT:一种有效的局部特征描述方法. 自动化学报, 2014, 40(4): 675-682. doi: 10.3724/SP.J.1004.2014.00675
YAN Xue-Jun, ZHAO Chun-Xia, YUAN Xia. 2DPCA-SIFT:An Efficient Local Feature Descriptor. ACTA AUTOMATICA SINICA, 2014, 40(4): 675-682. doi: 10.3724/SP.J.1004.2014.00675
Citation: YAN Xue-Jun, ZHAO Chun-Xia, YUAN Xia. 2DPCA-SIFT:An Efficient Local Feature Descriptor. ACTA AUTOMATICA SINICA, 2014, 40(4): 675-682. doi: 10.3724/SP.J.1004.2014.00675

2DPCA-SIFT:一种有效的局部特征描述方法

doi: 10.3724/SP.J.1004.2014.00675
基金项目: 

国家自然科学基金(61272220),江苏省自然科学青年基金(BK2012399)资助

详细信息
    作者简介:

    赵春霞 南京理工大学计算机科学与工程学院教授.主要研究方向为智能机器人技术,图像处理.E-mail:zhaochx@mail.njust.edu.cn

2DPCA-SIFT:An Efficient Local Feature Descriptor

Funds: 

Supported by National Natural Science Foundation of China (61272220) and Natural Science Foundation of Jiangsu Province (BK2012399)

  • 摘要: PCA-SIFT (Principal component analysis—scale invariant feature transform)方法通过对归一化梯度向量进行PCA降维,在保留特征不变性的同时,有效地降低了特征矢量的维数,从而提高了局部特征的匹配速度. 但PCA-SIFT中对本征向量空间的求解非常耗时,极大地限制了PCA-SIFT的灵活性与应用范围. 本文提出采用2DPCA对梯度向量块进行降维的特征描述方法. 该方法相比于PCA-SIFT,可以快速地求解本征空间. 实验结果表明:2DPCA-SIFT在多种图像变换匹配和图像检索实验中可以实现与PCA-SIFT相当的性能,并且从计算效率上看,2DPCA-SIFT具有更好的扩展性.
  • [1] Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110
    [2] Lourenço M, Barreto J P A, Vasconcelos F. sRD-SIFT: keypoint detection and matching in images with radial distortion. IEEE Transactions on Robotics, 2012, 28(3): 752-760
    [3] Lin Hai-Feng, Ma Yu-Feng, Song Tao. Research on object tracking algorithm based on SIFT. Acta Automatica Sinica, 2010, 36(8): 1204-1208(蔺海峰, 马宇峰, 宋涛. 基于SIFT 特征目标跟踪算法研究. 自动化学报, 2010, 36(8): 1204-1208)
    [4] Rublee E, Rabaud V, Konolige K G, Bradski J R. ORB: an efficient alternative to SIFT or SURF. In: Proceedings of the 2011 IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011. 2564-2571
    [5] Tian Q, Zhang S L, Zhou W G, Ji R R, Ni B B, Sebe N. Building descriptive and discriminative visual codebook for large-scale image applications. Multimedia Tools and Applications, 2011, 51(2): 441-477
    [6] Mikolajczyk K I, Schmid C. A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630
    [7] Zeng Luan, Gu Da-Long. A SIFT feature descriptor based on sector area partitioning. Acta Automatica Sinica, 2012, 38(9): 1513-1519(曾峦, 顾大龙. 一种基于扇形区域分割的SIFT 特征描述符. 自动化学报, 2012, 38(9): 1513-1519)
    [8] Zeng Hui, Mu Zhi-Chun, Wang Xiu-Qing. A robust method for local image feature region description. Acta Automatica Sinica, 2011, 37(6): 658-664(曾慧, 穆志纯, 王秀青. 一种鲁棒的图像局部特征区域的描述方法. 自动化学报, 2011, 37(6): 658-664)
    [9] Bay H, Tuytelaars T, van Gool L. SURF: speeded up robust features. In: Proceedings of the 9th European Conference on Computer Vision. Graz, Austria: Springer, 2006. 404-417
    [10] Juan L, Gwun O. A comparison of SIFT, PCA-SIFT and SURF. International Journal of Image Processing, 2009, 3(4): 143-152
    [11] Huang C R, Chen C R, Chung P C. Contrast context histogram: an efficient discriminating local descriptor for object recognition and image matching. Pattern Recognition, 2008, 41(10): 3071-3077
    [12] Liu Ping-Ping, Zhao Hong-Wei, Zang Xue-Bai, Dai Jin-Bo. A fast local feature description algorithm. Acta Automatica Sinica, 2010, 36(1): 40-45(刘萍萍, 赵宏伟, 臧雪柏, 戴金波. 一种快速局部特征描述算法. 自动化学报, 2010, 36(1): 40-45)
    [13] Yang Heng, Wang Qing. A novel local invariant feature detection and description algorithm. Chinese Journal of Computers, 2010, 33(5): 935-944(杨恒, 王庆. 一种新的局部不变特征检测和描述算法. 计算机学报, 2010, 33(5): 935-944)
    [14] Ke Y, Sukthankar R. PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2004. 506-513
    [15] Winder S, Hua G, Brown, M. Picking the best DAISY. In: Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE, 2009. 20-25
    [16] Shan H H, Cottrell G W. Looking around the backyard helps to recognize faces and digits. In: Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8
    [17] Yang J, Zhang D Q, Frangi A F, Yang J Y. Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131-137
    [18] Yang J, Xu Y, Yang J Y. Bi-2DPCA: A fast face coding method for recognition. Pattern Recognition Recent Advances. Vienna, Austria: InTech, 2010. 313-340
  • 加载中
计量
  • 文章访问数:  2319
  • HTML全文浏览量:  103
  • PDF下载量:  1862
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-26
  • 修回日期:  2013-03-04
  • 刊出日期:  2014-04-20

目录

    /

    返回文章
    返回