2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

求解总拖期时间最小化流水车间调度问题的多智能体进化算法

王大志 刘士新 郭希旺

王大志, 刘士新, 郭希旺. 求解总拖期时间最小化流水车间调度问题的多智能体进化算法. 自动化学报, 2014, 40(3): 548-555. doi: 10.3724/SP.J.1004.2014.00548
引用本文: 王大志, 刘士新, 郭希旺. 求解总拖期时间最小化流水车间调度问题的多智能体进化算法. 自动化学报, 2014, 40(3): 548-555. doi: 10.3724/SP.J.1004.2014.00548
WANG Da-Zhi, LIU Shi-Xin, GUO Xi-Wang. A Multi-agent Evolutionary Algorithm for Solving Total Tardiness Permutation Flow-shop Scheduling Problem. ACTA AUTOMATICA SINICA, 2014, 40(3): 548-555. doi: 10.3724/SP.J.1004.2014.00548
Citation: WANG Da-Zhi, LIU Shi-Xin, GUO Xi-Wang. A Multi-agent Evolutionary Algorithm for Solving Total Tardiness Permutation Flow-shop Scheduling Problem. ACTA AUTOMATICA SINICA, 2014, 40(3): 548-555. doi: 10.3724/SP.J.1004.2014.00548

求解总拖期时间最小化流水车间调度问题的多智能体进化算法

doi: 10.3724/SP.J.1004.2014.00548
基金项目: 

国家自然科学基金(61333006,71171038),中央高校基本科研业务费(N110404024)资助

详细信息
    作者简介:

    刘士新 东北大学信息科学与工程学院系统工程研究所教授. 主要研究方向为项目管理, 生产计划与调度, 最优化理论与应用.E-mail:sxliu@mail.neu.edu.cn

    通讯作者:

    王大志

A Multi-agent Evolutionary Algorithm for Solving Total Tardiness Permutation Flow-shop Scheduling Problem

Funds: 

Supported by National Natural Science Foundation of China (61333006, 71171038), the Fundamental Research Funds for the Central Universities (N110404024)

  • 摘要: 针对总拖期时间最小化的置换流水车间调度问题(Total tardiness permutation flow-shop scheduling problem) 提出了一种基于多智能体的进化搜索算法. 在该算法中,采用基于延迟时间排序的学习搜索策略(Tardiness rank based learning),快速产生高质量的新个体,并根据概率更新模型进行智能体网格的更新进化. 同时通过实验设计的方法探讨了算法参数设置对算法性能的影响. 为了验证算法的性能,求解了Vallada标准测试集中540个测试问题,并将测试结果与一些代表算法进行比较,验证了该算法的有效性.
  • [1] Vallada E, Rubn R. Cooperative metaheuristics for the permutation flowshop scheduling problem. European Journal of Operational Research, 2009, 193(2): 365-376
    [2] [2] Vallada E, Rubn R, Gerardo M. Minimising total tardiness in the m-machine flowshop problem: a review and evaluation of heuristics and metaheuristics. Computers Operations Research, 2008, 35(4): 1350-1373
    [3] [3] Liao J M, Huang C J. Tabu search for non-permutation flowshop scheduling problem with minimizing total tardiness. Applied Mathematics and Computation, 2010, 217(2): 557-567
    [4] [4] Hasija S, Rajendran C. Scheduling in flowshops to minimize total tardiness of jobs. International Journal of Production Research, 2004, 42(11): 2289-2301
    [5] [5] Armentano V A, Ronconi D P. Tabu search for total tardiness minimization in flowshop scheduling problems. Computers Operations Research, 1999, 26(3): 219-235
    [6] [6] Talip K, Bilal T, John W. Elite guided steady-state genetic algorithm for minimizing total tardiness in flowshops. Computers Industrial Engineering, 2010, 58(2): 300-306
    [7] [7] Li B B, Wang L, Liu B. An effective PSO-based hybrid algorithm for multi-objective permutation flow shop scheduling. IEEE Transactions on Systems, Man, and Cybernetics --Part A: Systems and Humans, 2008, 38(4): 818-831
    [8] Jiao Li-Cheng, Liu Jing, Zhong Wei-Cai, Coevolutionary Computation and Multiagent Systems. Beijng: Science Press, 2006. 205-224(焦李成, 刘静, 钟伟才. 协同进化计算与多智能体系统. 北京: 科学出版社, 2006. 205-224)
    [9] [9] Sarker R A, Ray T. Agent-Based Evolutionary Search. Berlin: Springer-Verlag, 2010. 97-116
    [10] Zhong Wei-Cai, Liu Jing, Jiao Li-Cheng. Optimal approximation of linear systems by multi-agent genetic algorithm. Acta Automatica Sinica, 2004, 30(6): 933-938(钟伟才, 刘静, 焦李成. 多智能体遗传算法用于线性系统逼近. 自动化学报, 2004, 30(6): 933-938)
    [11] Sttzle T. Applying iterated local search to the permutation flow shop problem, Technical Report, AIDA-98-04, FG Intellektik, FB Informatik, TU Darmstadt, 1998
    [12] Osman I, Potts C. Simulated annealing for permutation flow-shop scheduling. Omega, 1989, 17(6): 551-557
    [13] Montgomery D C. Design and Analysis of Experiments (5th Edition). Hoblken: John Wiley and Sons, 2000
    [14] Ruiz R, Maroto C, Alcaraz J. Two new robust genetic algorithms for the flowshop scheduling problem. Omega, 2006, 34(5): 461-476
    [15] Parthasarathy S, Rajendran C. A simulated annealing heuristic for scheduling to minimize mean weighted tardiness in a flowshop with sequence-dependent setup times of jobs --a case study. Production Planning and Control, 1997, 8(5): 475-483
    [16] Hasija S, Rajendran C. Scheduling in flowshops to minimize total tardiness of jobs. International Journal of Production Research, 2004, 42(11): 2289-2301
    [17] Vallada E, Rubn R. Genetic algorithms with path relinking for the minimum tardiness permutation flowshop problem. Omega, 2010, 38(1-2): 57-67
    [18] Ruiz R, Sttzle T. A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European Journal of Operational Research, 2007, 177(3): 2033-2049
    [19] Zemel E. Measuring the quality of approximate solutions to zero-one programming problems. Mathematics of Operations Research, 1981, 6(3): 319-332
    [20] Kim Y D. Heuristics for flowshop scheduling problems minimizing mean tardiness. Journal of the Operational Research Society, 1993, 44(1): 19-28
    [21] Kim Y D, Lim H G, Park M W. Search heuristics for a flow shop scheduling problem in a printed circuit board assembly process. European Journal of Operational Research, 1996, 91(1): 124-143
  • 加载中
计量
  • 文章访问数:  1830
  • HTML全文浏览量:  120
  • PDF下载量:  1325
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-12
  • 修回日期:  2013-04-19
  • 刊出日期:  2014-03-20

目录

    /

    返回文章
    返回