[1]
|
Yang J, Yan R, Hauptmann A G. Cross-domain video concept detection using adaptive SVMs. In: Proceedings of the 15th International Conference on Multimedia. New York, USA: ACM, 2007. 188-197
|
[2]
|
[2] Blitzer J, McDonald R, Pereira F. Domain adaptation with structural correspondence learning. In: Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2006. 120-128
|
[3]
|
[3] Pan S J, Tsang I W H, Kwok J T Y, Yang Q. Domain adaptation via transfer component analysis. IEEE Transactions on Neural Networks, 2011, 22(2): 199-210
|
[4]
|
[4] Dai W Y, Yang Q, Xue G R, Yu Y. Boosting for transfer learning. In: Proceedings of the 24th International Conference on Machine Learning. New York, USA: ACM, 2007. 193-200
|
[5]
|
[5] Dai W Y, Xue G R, Yang Q, Yu Y. Co-clustering based classification for out-of-domain documents. In: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining. New York, USA: ACM, 2007. 210-219
|
[6]
|
[6] Xing D K, Dai W Y, Xue G R, Yu Y. Bridged refinement for transfer learning. In: Proceedings of the 11th European Conference Practice of Knowledge Discovery in Databases. Berlin: Springer, 2007. 324-335
|
[7]
|
[7] Suzuki T, Sugiyama M, Tanaka T. Mutual information approximation via maximum likelihood estimation of density ratio. In: Proceedings of the 2009 IEEE international conference on Symposium on Information Theory. NJ, USA: IEEE, 2009. 463-467
|
[8]
|
[8] Suzuki T, Sugiyama M, Sese J, Kanamori T. Approximating mutual information by maximum likelihood density ratio estimation. In: Proceedings of the JMLR: Workshop and Conference Proceedings. NJ, USA: IEEE, 2008. 4: 5-20
|
[9]
|
[9] Zhuang F Z, Luo P, Xiong H, Xiong Y H, He Q, Shi Z Z. Cross-domain learning from multiple sources: a consensus regularization perspective. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(12): 1664-1678
|
[10]
|
Bollegala D, Weir D, Carroll J. Using multiple sources to construct a sentiment sensitive thesaurus for cross-domain sentiment classification. In: HLT'11 Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2011. 132-141
|
[11]
|
Hosmer D W, Lemeshow S. Applied Logistic Regression. Hoboken, NJ: John Wiley Sons Press, 2001
|
[12]
|
Cal D, Condorelli A, Papa S, Rata M, Zagarella L. Improving intelligence through use of natural language processing. A comparison between NLP interfaces and traditional visual GIS interfaces. Procedia Computer Science, 2011, 21(5): 920-925
|
[13]
|
Yu H F, Huang F L, Lin C J. Dual coordinate descent methods for logistic regression and maximum entropy models. Machine Learning, 2011, 85(1-2): 41-75
|
[14]
|
Gauvain J L, Lee C H. Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains. IEEE Transactions on Speech and Audio Processing, 1994, 2(2): 291-298
|
[15]
|
Ruszczynski A. Nonlinear Optimization. Princeton, NJ: Princeton University Press, 2006
|
[16]
|
Keerthi S S, Duan K B, Shevade S K, Poo A N. A fast dual algorithm for kernel logistic regression. Machine Learning, 2005, 61(1-3): 151-165
|
[17]
|
Joachims T. Making large-scale support vector machine learning practical. Advances in Kernel Methods: Support Vector Learning. Cambridge, MA: MIT Press, 1999. 169-184
|
[18]
|
Collobert P, Sinz P, Weston P, Bottou L. Large scale transductive SVMs. The Journal of Machine Learning Research, 2006, 7: 1687-1712
|
[19]
|
Joachims T. Transductive inference for text classification using support vector machines. In: Proceedings of the 16th International Conference on Machine Learning. San Francisco, CA: Morgan Kaufmann, 1999. 200-209
|
[20]
|
Joachims T. Transductive learning via spectral graph partitioning. In: Proceedings of the 20th International Conference on Machine Learning. New York, USA: ACM, 2003. 290-297
|
[21]
|
Chapelle O, Zien A. Semi-supervised classification by low density separation. In: Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics. San Francisco, CA: Morgan Kaufmann 2005. 57-64
|
[22]
|
Chapelle O, Chi M M, Zien A. A continuation method for semi-supervised SVMs. In: Proceedings of the 23rd International Conference on Machine Learning. New York, USA: ACM, 2006. 185-192
|
[23]
|
Lin C J, Weng R C, Keerthi S S. Trust region Newton method for large-scale logistic regression. Journal of Machine Learning Research, 2008, 9(4): 627-650
|
[24]
|
Deng W B. A limited memory quasi-Newton method for large scale problem. Numerical Mathematics, 1996, 5(1): 71-79
|
[25]
|
Zhang Lei. The Research on Human-computer Cooperation in Content-based Image Retrieval [Ph.D. dissertation], Tsinghua University, China, 2001 (张磊. 基于人机交互的内容图像检索研究 [博士论文]. 清华大学, 中国, 2001)
|
[26]
|
Shi Z P, Ye F, He Q, Shi Z Z. Symmetrical invariant LBP texture descriptor and application for image retrieval. In: Proceedings of the 2008 Congress on Image and Signal Processing. Sanya, China: IEEE Computer Society, 2008. 825-829
|