2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂分数阶多自主体系统的运动一致性

杨洪勇 郭雷 张玉玲 姚秀明

杨洪勇, 郭雷, 张玉玲, 姚秀明. 复杂分数阶多自主体系统的运动一致性. 自动化学报, 2014, 40(3): 489-496. doi: 10.3724/SP.J.1004.2014.00489
引用本文: 杨洪勇, 郭雷, 张玉玲, 姚秀明. 复杂分数阶多自主体系统的运动一致性. 自动化学报, 2014, 40(3): 489-496. doi: 10.3724/SP.J.1004.2014.00489
YANG Hong-Yong, GUO Lei, ZHANG Yu-Ling, YAO Xiu-Ming. Movement Consensus of Complex Fractional-order Multi-agent Systems. ACTA AUTOMATICA SINICA, 2014, 40(3): 489-496. doi: 10.3724/SP.J.1004.2014.00489
Citation: YANG Hong-Yong, GUO Lei, ZHANG Yu-Ling, YAO Xiu-Ming. Movement Consensus of Complex Fractional-order Multi-agent Systems. ACTA AUTOMATICA SINICA, 2014, 40(3): 489-496. doi: 10.3724/SP.J.1004.2014.00489

复杂分数阶多自主体系统的运动一致性

doi: 10.3724/SP.J.1004.2014.00489
基金项目: 

国家重点基础研究发展计划(973计划)(2012CB720003),国家自然科学基金(61127007,61203041,61273152,91016004),山东省自然科学基金(ZR2011FM017,ZR2013FL007)资助

详细信息
    作者简介:

    郭雷 北京航空航天大学自动化学院教授. 1997 年毕业于东南大学自动化系.主要研究方向为鲁棒控制, 随机系统, 故障诊断, 滤波器设计, 航空航天领域中的非线性控制.E-mail:guol@buaa.edu.cn

    通讯作者:

    杨洪勇

Movement Consensus of Complex Fractional-order Multi-agent Systems

Funds: 

Supported by National Basic Research Program of China (973 Program) (2012CB720003), National Natural Science Foundation of China (61127007, 61203041, 61273152, 91016004), Natural Science Foundation of Shandong Province (ZR2011FM017, ZR2013FL007)

  • 摘要: 复杂环境中,许多自然现象的动力学特性不能应用整数阶方程描述,而只能用分数阶(非整数阶)动力学的智能个体合作行为来解释. 本文假设多自主体 系统存在个体差异,采用不同的分数阶动力学特性组成复杂分数混合阶微分方程. 应用分数阶系统的Laplace变换和频域理论,研究了有向网络拓扑下,时延分数混合阶多自主体系统的运动一致性. 由于整数阶系统是分数阶系统的特殊情况,本文的结论可以推广到整数阶与分数阶混合的多自主体系统中. 最后,应用仿真实例对本文结论进行了验证.
  • [1] Couzin I D, Krause J, James R, Ruxton G D, Franks N R. Collective memory and spatial sorting in animal groups. Journal of Theoretical Biology, 2002, 218(1): 1-11
    [2] [2] Parrish J K, Viscido S V, Grnbaum D. Self-organized fish schools: an examination of emergent properties. Biological Bulletin, 2002, 202(3): 296-305
    [3] [3] Low D J. Following the crowd. Nature, 2000, 407(6803): 465-466
    [4] [4] Czirk A, Vicsek T. Collective behavior of interacting self-propelled particles. Physica A: Statistical Mechanics and its Applications, 2000, 281(1-4): 17-29
    [5] [5] Reynolds C W. Flocks, herds and schools: a distributed behavioral model. ACM SIGGRAPH Computer Graphics, 1987, 21(4): 25-34
    [6] [6] Vicsek T, Czirk A, Ben-Jacob E, Cohen I, Shochet O. Novel type of phase transition in a system of self-driven particles. Physical Review Letters, 1995, 75(6): 1226-1229
    [7] [7] Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 2003, 48(6): 988-1001
    [8] [8] Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 2004, 49(9): 1520-1533
    [9] [9] Ren W, Beard R W, Atkins E M. Information consensus in multivehicle cooperative control: collective group behavior through local interaction. IEEE Control Systems Magazine, 2007, 27(2): 71-82
    [10] Li Shi-Hua, Du Hai-Bo, Lin Xiang-Ze. Finite-time consensus algorithm for multi-agent with double-integrator dynamics. Automatica, 2011, 47(8): 1706-1712
    [11] Lin Peng, Jia Ying-Min. Consensus of second-order discrete-time multi-agent systems with nonuniform time-delays and dynamically changing topologies. Automatica, 2009, 45(9): 2154-2158
    [12] Yu Jun-Yan, Wang Long. Group consensus in multi-agent systems with switching topologies and communication delays. Systems Control Letters, 2010, 59(6): 340-348
    [13] Xiao Feng, Wang Long, Chen Jie, Gao Yan-Ping. Finite-time formation control for multi-agent systems. Automatica, 2009, 45(11): 2605-2611
    [14] Chen Fei, Chen Zeng-Qiang, Xiang Lin-Ying, Liu Zhong-Xin, Yuan Zhu-Zhi. Reaching a consensus via pinning control. Automatica, 2009, 45(5): 1215-1220
    [15] Yang Hong-Yong, Zhang Zhen-Xing, Zhang Si-Ying. Consensus of second-order multi-agent systems with exogenous disturbances. International Journal of Robust and Nonlinear Control, 2011, 21(9): 945-956
    [16] Hong Yi-Guang, Chen Guan-Rong, Bushnell L. Distributed observers design for leader-following control of multi-agent networks. Automatica, 2008, 44(3): 846-850
    [17] Tian Yu-Ping, Liu Cheng-Lin. Consensus of multi-agent systems with diverse input and communication delays. IEEE Transactions on Automatic Control, 2008, 53(9): 2122-2128
    [18] Tian Yu-Ping, Liu Cheng-Lin. Robust consensus of multi-agent systems with diverse input delays and asymmetric interconnection perturbations. Automatica, 2009, 45(5): 1374-1353
    [19] Yang Hong-Yong, Zhu Xun-Lin, Zhang Si-Ying. Consensus of second-order delayed multi-agent systems with leader-following. European Journal of Control, 2010, 16(2): 188-199
    [20] Su Hou-Sheng, Wang Xiao-Fan, Lin Zong-Li. Flocking of multi-agents with a virtual leader. IEEE Transactions on Automatic Control, 2009, 54(2): 293-307
    [21] Wang Fei-Yue. Parallel control: a method for data-driven and computational control. Acta Automatica Sinica, 2013, 39(4): 293-302 (王飞跃. 平行控制: 数据驱动的计算控制方法. 自动化学报, 2013, 39(4): 293-302)
    [22] Chen Guan-Rong. Problems and challenges in control theory under complex dynamical network environments. Acta Automatica Sinica, 2013, 39(4): 312-321(陈关荣. 复杂动态网络环境下控制理论遇到的问题与挑战. 自动化学报, 2013, 39(4): 312-321)
    [23] Min Hai-Bo, Liu Yuan, Wang Shi-Cheng, Sun Fu-Chun. An overview on coordination control problem of multi-agent system. Acta Automatica Sinica, 2012, 38(10): 1557-1570 (闵海波, 刘源, 王仕成, 孙富春. 多个体协调控制问题综述. 自动化学报, 2012, 38(10): 1557-1570)
    [24] Yan Wei-Sheng, Li Jun-Bing, Wang Yin-Tao. Consensus for damaged multi-agent system. Acta Automatica Sinica, 2012, 38(11): 1880-1884 (严卫生, 李俊兵, 王银涛. 受损多智能体系统的信息一致性. 自动化学报, 2012, 38(11): 1880-1884)
    [25] Podlubny I. Fractional Differential Equations. San Diego, CA: Academic Press, 1999
    [26] Hilfer R. Applications of Fractional Calculus in Physics. New Jersey: World Scientific, 2000
    [27] Ren Wei, Cao Yong-Can. Distributed Coordination of Multi-agent Networks. London: Springer-Verlag, 2011
    [28] Cao Yong-Can, Li Yan, Ren Wei, Chen Yang-Quan. Distributed coordination of networked fractional-order systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2010, 40(2): 362-370
    [29] Cao Yong-Can, Ren Wei. Distributed formation control for fractional-order systems: dynamic interaction and absolute/relative damping. Systems Control Letters, 2010, 59(3-4): 233-240
    [30] Lee D J, Spong M K. Agreement with non-uniform information delays. In: Proceedings of the American Control Conference. Minneapolis, MN: IEEE, 2006. 756-761
    [31] Zheng Y, Zhu Y, Wang L. Consensus of heterogeneous multi-agent systems. IET Control Theory and Applications, 2011, 5(16): 1881-1888
    [32] Zheng Yuanshi, Wang Long. Finite-time consensus of heterogeneous multi-agent systems with and without velocity measurements. Systems Control Letters, 2012, 61(8): 871-878
    [33] Liu Cheng-Lin, Liu Fei. Stationary consensus of heterogeneous multi-agent systems with bounded communication delays. Automatica, 2011, 47(9): 2130-2133
    [34] Tian Yu-Ping, Zhang Ya. High-order consensus of heterogeneous multi-agent systems with unknown communication delays. Automatica, 2012, 48(6): 1205-1212
    [35] Vinnicombe G. On the Stability of End-to-End Congestion Control for the Internet, Technical report CUED/F-INFENG/TR. No. 398, Department of Engineering, University of Cambridge, USA, 2000
    [36] Desoer C A, Wang Y T. On the generalized Nyquist stability criterion. IEEE Transactions on Automatic Control, 1980, AC-25(2): 187-196
  • 加载中
计量
  • 文章访问数:  1872
  • HTML全文浏览量:  144
  • PDF下载量:  1368
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-26
  • 修回日期:  2013-05-24
  • 刊出日期:  2014-03-20

目录

    /

    返回文章
    返回