2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多优先级稳态优化的双层结构预测控制算法及软件实现

潘红光 高海南 孙耀 张英 丁宝苍

潘红光, 高海南, 孙耀, 张英, 丁宝苍. 基于多优先级稳态优化的双层结构预测控制算法及软件实现. 自动化学报, 2014, 40(3): 405-414. doi: 10.3724/SP.J.1004.2014.00405
引用本文: 潘红光, 高海南, 孙耀, 张英, 丁宝苍. 基于多优先级稳态优化的双层结构预测控制算法及软件实现. 自动化学报, 2014, 40(3): 405-414. doi: 10.3724/SP.J.1004.2014.00405
PAN Hong-Guang, GAO Hai-Nan, SUN Yao, ZHANG Ying, DING Bao-Cang. The Algorithm and Software Implementation for Double-layered Model Predictive Control Based on Multi-priority Rank Steady-state Optimization. ACTA AUTOMATICA SINICA, 2014, 40(3): 405-414. doi: 10.3724/SP.J.1004.2014.00405
Citation: PAN Hong-Guang, GAO Hai-Nan, SUN Yao, ZHANG Ying, DING Bao-Cang. The Algorithm and Software Implementation for Double-layered Model Predictive Control Based on Multi-priority Rank Steady-state Optimization. ACTA AUTOMATICA SINICA, 2014, 40(3): 405-414. doi: 10.3724/SP.J.1004.2014.00405

基于多优先级稳态优化的双层结构预测控制算法及软件实现

doi: 10.3724/SP.J.1004.2014.00405
基金项目: 

国家自然科学基金(61174095),工业控制技术国家重点实验室(ICT1213)资助

详细信息
    作者简介:

    潘红光 西安交通大学博士研究生. 主要研究方向为预测控制.E-mail:hongguangpan@163.com

    通讯作者:

    丁宝苍

The Algorithm and Software Implementation for Double-layered Model Predictive Control Based on Multi-priority Rank Steady-state Optimization

Funds: 

Supported by National Natural Science Foundation of China (61174095) and the State Key Laboratory of Industrial Control Technology (ICT1213)

  • 摘要: 研究包含稳态目标计算(Steady-state target calculation,SSTC)层和动态控制层的双层结构预测控制(Model predictive control,MPC)及其实现方法. 我们将已有的辨识、优化和控制方案适当地组合并软件化. 通过在多优先级稳态目标计算中引入新的变量,给出了稳态目标计算的统一表达方法,每个优先级的优化问题或是跟踪外部目标,或是放松软约束. 通过仿真算例和应用实例相结合的方式验证了软件功能.
  • [1] Xi Yu-Geng, Li De-Wei. Fundamental philosophy and status of qualitative synthesis of model predictive control. Acta Automatica Sinica, 2008, 34(10): 1225-1234 (席裕庚, 李德伟. 预测控制定性综合理论的基本思路和研究现状. 自动化学报, 2008, 34(10): 1225-1234)
    [2] Ding Bao-Cang. The Theories and Methods of Model Predictive Control. Beijing: China Machine Press, 2008 (丁宝苍. 预测控制的理论与方法. 北京: 机械工业出版社, 2008)
    [3] Zou Tao. The Steady State Optimization and Dynamic Control of Constrained Multivariable Systems [Ph.D. dissertation], Shanghai Jiao Tong University, China, 2007 (邹涛. 多变量有约束控制系统的稳态优化与动态控制 [博士学位论文], 上海交通大学, 中国, 2007)
    [4] Xu Zu-Hua. Research on Theory and Applications of Model Predictive Control [Ph.D. dissertation], Zhejiang University, China, 2004 (徐祖华. 模型预测控制理论及应用研究 [博士学位论文], 浙江大学, 中国, 2004)
    [5] [5] Skogestad S. Plantwide control: the search for the self-optimizing control structure. Journal of Process Control, 2000, 10(5): 487-507
    [6] [6] Qin S J, Badgwell T A. A survey of industrial model predictive control technology. Control Engineering Practice, 2003, 11(7): 733-764
    [7] [7] Rao C V, Rawlings J B. Steady states and constraints in model predictive control. AIChE Journal, 1999, 45(6): 1266-1278
    [8] [8] Ying C M, Joseph B. Performance and stability analysis of LP-MPC and QP-MPC cascade control systems. AIChE Journal, 1999, 45(7): 1521-1534
    [9] [9] Kassmann D E, Badgwell T A, Hawkins R B. Robust steady-state target calculation for model predictive control. AIChE Journal, 2000, 46(5): 1007-1024
    [10] Nikandrov A, Swartz C L E. Sensitivity analysis of LP-MPC cascade control systems. Journal of Process Control, 2009, 19(1): 16-24
    [11] Pannocchia G, Kerrigan E C. Offset-free receding horizon control of constrained linear systems. AIChE Journal, 2005, 51(12): 3134-3146
    [12] Maeder U, Morari M. Offset-free reference tracking with model predictive control. Automatica, 2010, 46(9): 1469-1476
    [13] Maeder U, Borrelli F, Morari M. Linear offset-free model predictive control. Automatica, 2009, 45(10): 2214-2222
    [14] Muske K R, Badgwell T A. Disturbance modeling for offset-free linear model predictive control. Journal of Process Control, 2002, 12(5): 617-632
    [15] Van Overschee P, De Moor B L. Subspace Identification for Linear Systems: Theory, Implementation, Applications. Norwell, MA: Kluwer, 1996
    [16] Katayama T. Subspace Methods for System Identification. Germany: Springer, 2005
    [17] Qin S J. An overview of subspace identification. Computers and Chemical Engineering, 2006, 30(10-12): 1502-1513
    [18] Huang B, Kadali R. Dynamic Modeling, Predictive Control and Performance Monitoring: A Data-driven Subspace Approach. Germany: Springer-Verlag, 2008
    [19] Zou T, Li H Q, Zhang X X, Su H Y. Feasibility and soft constraint of steady state target calculation layer in LP-MPC and QP-MPC cascade control systems. In: Proceedings of 2011 International Symposium on Advanced Control of Industrial Processes (ADCONIP). Hangzhou, China: IEEE, 2011. 524-529
    [20] Feng Shao-Hui. Research on Key Technology and Applications of Model Predictive Control Software [Ph.D. dissertation], Zhejiang University, China, 2003 (冯少辉. 模型预测控制工程软件关键技术及应用研究 [博士学位论文], 浙江大学, 中国, 2003)
    [21] Liu Fu-Chun. Research and Applications of Multi-variable Constrained Model Predictive Control Algorithm and Software [Ph.D. dissertation], Zhejiang University, China, 2003 (刘富春.多变量有约束模型预测控制算法及软件实现研究与应用[博士学位论文], 浙江大学, 中国, 2003)
    [22] Ding B C, Zou T, Pan H G. A discussion on stability of offset-free linear model predictive control. In: Proceedings of the 2012 24th Chinese Control and Decision Conference (CCDC). Taiyuan, China: IEEE, 2012. 80-85
    [23] Li S Y, Zheng Y, Wang B P. Steady-state target calculation for constrained predictive control systems based on goal programming. Asia-Pacific Journal of Chemical Engineering, 2008, 3(6): 648-655
    [24] Zhu Yu-Cai. Multivariable System Identification for Process Control. Changsha: National University of Defense Science and Technology Press, 2005 (朱豫才. 过程控制的多变量系统辨识. 长沙: 国防科技大学出版社, 2005)
  • 加载中
计量
  • 文章访问数:  2266
  • HTML全文浏览量:  89
  • PDF下载量:  1159
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-24
  • 修回日期:  2013-05-23
  • 刊出日期:  2014-03-20

目录

    /

    返回文章
    返回