[1]
|
Zhang P, Li M, Wu Y, Gan L, Liu M, Wang F, Liu G F. Unsupervised multi-class segmentation of SAR images using fuzzy triplet Markov fields model. Pattern Recognition, 2012, 45(11): 4018-4033
|
[2]
|
Xue Jing-Hao, Zhang Yu-Jin, Lin Xing-Gang. Rayleigh-distribution based minimum error thresholding for SAR images. Journal of Electronics (China), 1999, 21(2): 219-225 (薛景浩, 章毓晋, 林行刚. SAR图像基于Rayleigh分布假设的最小误差阈值化分割. 电子科学学刊, 1999, 21(2): 219-225)
|
[3]
|
Zaart A E, Ziou D, Wang S R, Jiang Q S, Bénié G B. SAR images segmentation using mixture of Gamma distribution. In: Proceedings of Vision Interface'99. Trois-Riviéres, Canada: Université de Sherbrooke, 1999. 125-130
|
[4]
|
Han C M, Guo H D, Shao Y, Liao J J. A method to segment SAR images based on histogram. In: Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium. Seoul, Korea (South): IEEE, 2005. 3694-3696
|
[5]
|
Zhang X R, Jiao L C, Liu F, Bo L F, Gong M G. Spectral clustering ensemble applied to SAR image segmentation. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(7): 2126-2136
|
[6]
|
Zhang D M, Fu M S, Luo B. SAR image segmentation using kernel density estimation on region adjacency graph. In: Proceedings of the 2nd Asia-Pacific Conference on Synthetic Aperture Radar. Xi'an, China: IEEE, 2009. 668-671
|
[7]
|
Deng H W, Clausi D A. Unsupervised segmentation of synthetic aperture radar sea ice imagery using a novel Markov random field model. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 528-538
|
[8]
|
Fjortoft R, Delignon Y, Pieczynski W, Sigelle M, Tupin F. Unsupervised classification of radar images using hidden Markov chains and hidden Markov random fields. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(3): 675-686
|
[9]
|
Li Y, Li J, Chapman M A. Segmentation of SAR intensity imagery with a voronoi tessellation, Bayesian inference, and reversible jump MCMC algorithm. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4): 1872-1881
|
[10]
|
Yu Q Y, Clausi D A. IRGS: image segmentation using edge penalties and region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(12): 2126-2139
|
[11]
|
Xia G S, He C, Sun H. Integration of synthetic aperture radar image segmentation method using Markov random field on region adjacency graph. IET Radar, Sonar & Navigation, 2007, 1(5): 348-353
|
[12]
|
Cao Y F, Sun H, Xu X. An unsupervised segmentation method based on MPM for SAR images. IEEE Geoscience and Remote Sensing Letters, 2005, 2(1): 55-58
|
[13]
|
Kayabol K, Zerubia J. Unsupervised amplitude and texture classification of SAR images with multinomial latent model. IEEE Transactions on Image Processing, 2013, 22(2): 561-572
|
[14]
|
Ma M, Liang J H, Sun L, Wang M. SAR image segmentation based on SWT and improved AFSA. In: Proceedings of the 3rd International Symposium on Intelligent Information Technology and Security Informatics. Jinggangshan, China: IEEE, 2010. 146-149
|
[15]
|
Karvonen J A. Baltic sea ice SAR segmentation and classification using modified pulse-coupled neural networks. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7): 1566-1574
|
[16]
|
Liu R C, Zhang W, Jiao L C, Liu F. A multiobjective immune clustering ensemble technique applied to unsupervised SAR image segmentation. In: Proceedings of the 9th ACM International Conference on Image and Video Retrieval. Xi'an, China: ACM, 2010. 158-165
|
[17]
|
Quan J J, Wen X B, Xu X Q. Multiscale probabilistic neural network method for SAR image segmentation. Applied Mathematics and Computation, 2008, 205(2): 578-583
|
[18]
|
Ma M, Liang J H, Guo M, Fan Y, Yin Y L. SAR image segmentation based on artificial bee colony algorithm. Applied Soft Computing, 2011, 11(8): 5205-5214
|
[19]
|
Yang D D, Jiao L C, Gong M G, Liu F. Artificial immune multi-objective SAR image segmentation with fused complementary features. Information Sciences, 2011, 181(13): 2797-2812
|
[20]
|
Liu Z, Fan X W, Lv F Y. SAR image segmentation using contourlet and support vector machine. In: Proceedings of the 5th International Conference on Natural Computation. Tianjin, China: IEEE, 2009. 250-254
|
[21]
|
Han P, Zhang R, Su Z G, Wu R B. An iterative segmentation algorithm of SAR image based on support vector machine. In: Proceedings of the 2nd Asia-Pacific Conference on Synthetic Aperture Radar. Xi'an, China: IEEE, 2009. 676-679
|
[22]
|
Carvalho E A, Ushizima D M, Medeiros F N S, Martins C I O, Marques R C P, Oliveira I N S. SAR imagery segmentation by statistical region growing and hierarchical merging. Digital Signal Processing, 2010, 20(5): 1365-1378
|
[23]
|
Li W, Benie G B, He D C, Wang S R, Ziou D, Hugh Q, Gwyn J. Watershed-based hierarchical SAR image segmentation. International Journal of Remote Sensing, 1999, 20(17): 3377-3390
|
[24]
|
Galland F, Bertaux N, Réfrégier P. Minimum description length synthetic aperture radar image segmentation. IEEE Transactions on Image Processing, 2003, 12(9): 995-1006
|
[25]
|
Krinidis S, Chatzis V. A robust fuzzy local information c-means clustering algorithm. IEEE Transactions on Image Processing, 2010, 19(5): 1328-1337
|
[26]
|
Cai W L, Chen S C, Zhang D Q. Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognition, 2007, 40(3): 825-838
|
[27]
|
Chen S C, Zhang D Q. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, 34(4): 1907-1916
|
[28]
|
Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619
|
[29]
|
Shi J B, Malik J. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905
|
[30]
|
Felzenszwalb P F, Huttenlocher D P. Efficient graph-based image segmentation. International Journal of Computer Vision, 2004, 59(2): 167-181
|
[31]
|
Meyer F. An overview of morphological segmentation. International Journal of Pattern Recognition and Artificial Intelligence, 2001, 15(7): 1089-1118
|
[32]
|
Levinshtein A, Stere A, Kutulakos K N, Fleet D J, Dickinson S J, Siddiqi K. TurboPixels: fast superpixels using geometric flows. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12): 2290-2297
|
[33]
|
Clausi D A, Deng H. Design-based texture feature fusion using Gabor filters and co-occurrence probabilities. IEEE Transactions on Image Processing, 2005, 14(7): 925-936
|
[34]
|
Randen T, Husoy J H. Filtering for texture classification: a comparative study. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(4): 291-310
|
[35]
|
Clausi D A. Comparison and fusion of co-occurrence, Gabor and MRF texture features for classification of SAR sea-ice imagery. Atmosphere-Ocean, 2001, 39(3): 183-194
|
[36]
|
Yu H, Zhang X R, Wang S, Hou B. Context-based hierarchical unequal merging for SAR image segmentation. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 995-1009
|
[37]
|
Dunn J C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics, 1973, 3(3): 32-57
|
[38]
|
Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms. New York, USA: Plenum, 1981
|
[39]
|
Bloch I. Information combination operators for data fusion: a comparative review with classification. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 1996, 26(1): 52-67
|
[40]
|
Desolneux A, Moisan L, Morel J M. From Gestalt Theory to Image Analysis: A Probabilistic Approach. New York, USA: Springer Verlag, 2007
|