2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于等价分量交叉相似性的Pareto支配性预测

郭观七 尹呈 曾文静 李武 严太山

郭观七, 尹呈, 曾文静, 李武, 严太山. 基于等价分量交叉相似性的Pareto支配性预测. 自动化学报, 2014, 40(1): 33-40. doi: 10.3724/SP.J.1004.2014.00033
引用本文: 郭观七, 尹呈, 曾文静, 李武, 严太山. 基于等价分量交叉相似性的Pareto支配性预测. 自动化学报, 2014, 40(1): 33-40. doi: 10.3724/SP.J.1004.2014.00033
GUO Guan-Qi, YIN Cheng, ZENG Wen-Jing, LI Wu, YAN Tai-Shan. Prediction of Pareto Dominance by Cross Similarity of Equivalent Components. ACTA AUTOMATICA SINICA, 2014, 40(1): 33-40. doi: 10.3724/SP.J.1004.2014.00033
Citation: GUO Guan-Qi, YIN Cheng, ZENG Wen-Jing, LI Wu, YAN Tai-Shan. Prediction of Pareto Dominance by Cross Similarity of Equivalent Components. ACTA AUTOMATICA SINICA, 2014, 40(1): 33-40. doi: 10.3724/SP.J.1004.2014.00033

基于等价分量交叉相似性的Pareto支配性预测

doi: 10.3724/SP.J.1004.2014.00033
基金项目: 

国家自然科学基金(60975049);湖南省自然科学基金(11JJ2037);湖南省高校科技创新团队支持计划资助

Prediction of Pareto Dominance by Cross Similarity of Equivalent Components

Funds: 

Supported by National Natural Science Foundation of China (60975049), Natural Science Foundation of Hunan Province (11JJ2037), and Aid Program for Science and Technology Innovative Research Team in Higher Educational Instituions of Hunan Province

  • 摘要: 研究用最近邻分类预测多目标优化问题Pareto支配性的相似性测度方法. 在分析决策分量对各目标分量贡献率的基础上定义决策向量的等价子向量,等价子向量由贡献率相同的决策分量所组成.提出基于等价子向量的最小交叉距离加 权和相似性测度方法.对每个目标分量,独立评价待测数据与N个已知样本的相似度,每个样本按其相似度值的升序赋予[0:N-1]之间的序号,按各目标上的序号之和最小准则确定最近邻样本.等价子向量最小交叉距离加权和相似性测度以及多目标最近邻搜索方法在确定决策向量相似性时,引入了决策空间到目标向量空间的映射知识,使决策变量相似性测度更真实地反映目标向量相似性.对典型多目标优化问题的Pareto支配性最近邻分类实验结果表明,提出的方法可显著地提高分类准确性.
  • [1] Deb K. Multi-objective Optimisation Using Evolutionary Algorithms: An Introduction, KanGAL Report 2011003, Indian Institute of Technology Kanpur, India, 2011
    [2] Zhou A M, Qu B Y, Li H, Zhao S Z, Suganthan P N, Zhang Q F. Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm and Evolutionary Computation, 2011, 1(1): 32-49
    [3] Nain P K S, Deb K. A Multi-objective Search and Optimization Procedure with Successive Approximate Models, KanGAL Report 2004012, Indian Institute of Technology Kanpur, India, 2004
    [4] Jin Y C, Sendhoff B. A systems approach to evolutionary multiobjective structural optimization and beyond. IEEE Computational Intelligence Magazine, 2009, 4(3): 62-76
    [5] Knowles J. ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Transactions on Evolutionary Computation, 2006, 10(1): 50-66
    [6] Schmidt M D, Lipson H. Coevolution of fitness predictors. IEEE Transactions on Evolutionary Computation, 2008, 12(6): 736-749
    [7] Samad A, Kim K Y, Goel T, Haftka R T, Shyy W. Multiple surrogate modeling for axial compressor blade shape optimization. Journal for Propulsion and Power, 2008, 24(2): 302-310
    [8] Shi L, Rasheed K. A survey of fitness approximation methods applied in evolutionary algorithms. Computational Intelligence in Expensive Optimization Problems, Adaptation Learning and Optimization. Berlin Heidelberg: Springer, 2010. 2: 3-28
    [9] Jin Y C. Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm and Evolutionary Computation, 2011, 1(2): 61-70
    [10] Goel T, Vaidyanathan R, Haftka R T, Shyy W, Queipo N V, Tucker K. Response surface approximation of Pareto opimal front in multi-objective optimization. Computer Methods in Applied Mechanics and Engineering, 2007, 196(4-6): 879-893
    [11] Zhang Q F, Liu W D, Tsang E, Virginas B. Expensive multiobjective optimization by MOEA/D with Gaussian process model. IEEE Transactions on Evolutionary Computation, 2010, 14(3): 456-474
    [12] Deb K, Nain P K S. An evolutionary multi-objective adaptive meta-modeling procedure using artificial neural networks. Evolutionary Computation in Dynamic and Uncertain Environments. Berlin, Germany: Springer-Verlag, 2007. 51: 297-322
    [13] Marjavaara B D, Lundström T S, Goel T, Mack Y, Shyy W. Hydraulic turbine diffuser shape optimization by multiple surrogate model approximations of Pareto fronts. Journal of Fluids Engineering, 2007, 129(9): 1228-1240
    [14] Lim D, Ong Y S, Jin Y C, Sendhoff B. A study on metamodeling techniques, ensembles, and multi-surrogates in evolutionary computation. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation. New York, USA: ACM, 2007. 1288-1295
    [15] Lim D, Jin Y C, Ong Y S, Sendoff B. Generalizing surrogate-assisted evolutionary computation. IEEE Transactions on Evolutionary Computation, 2010, 14(3): 329-355
    [16] Acar E, Rais-Rohani M. Ensemble of metamodels with optimized weight factors. Structural and Multidisciplinary Optimization, 2009, 37(3): 279-294
    [17] Shi L, Rasheed K. ASAGA: an adaptive surrogate-assisted genetic algorithm. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation. New York, USA: ACM, 2008. 1049-1056
    [18] Guo G, Li W, Yang B, Li W, Yin C. Predicting Pareto dominance in multi-objective optimization using pattern recognition. In: Proceedings of the 2012 International Conference on Intelligent System Design and Engineering Application (ISDEA). Sanya, China: IEEE, 2012. 456-459
    [19] Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of the 1st International Conference on Genetic Algorithms. New Jersey, USA: Lawrence Erlbaum, 1987. 93-100
    [20] Guo G Q, Yin C, Yan T S, Li W B. Binary nearest neighbor classification of predicting Pareto dominance in multi-objective optimization. In: Proceedings of the 2012 International Conference on Swarm Intelligence, Part I, LNCS 7331. Berlin: Springer-Verlag, 2012. 537-545
    [21] Guo G Q, Yin C, Yan T S, Li W. Nearest neighbor classification of Pareto dominance in multi-objective optimization. In: Proceedings of the 5th IEEE International Conference on Advanced Computational Intelligence. Nanjing, China: IEEE, 2012. 328-331
    [22] Fonseca C M, Fleming P J. Multiobjective optimization and multiple constraint handling with evolutionary algorithm Part Ⅱ: Application example. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 1998, 28(1): 38-47
    [23] Kursawe F. A variant of evolution strategies for vector optimization. Parallel Problem Solving from Nature, Schwefel I H P, Manner R (eds.), Berlin, Germany: Springer, 1990. 193-197
    [24] Zilter E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms: empirical results. Evolutionary Computation, 2000, 8(2): 173-195
    [25] Deb K, Thiele L, Laumanns M, Zitzler E. Scalable multi-objective optimization test problems. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC'02). Honolulu, HI: IEEE, 2002. 825-830
  • 加载中
计量
  • 文章访问数:  1617
  • HTML全文浏览量:  55
  • PDF下载量:  905
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-29
  • 修回日期:  2013-05-02
  • 刊出日期:  2014-01-20

目录

    /

    返回文章
    返回