[1]
|
Deb K. Multi-objective Optimisation Using Evolutionary Algorithms: An Introduction, KanGAL Report 2011003, Indian Institute of Technology Kanpur, India, 2011
|
[2]
|
Zhou A M, Qu B Y, Li H, Zhao S Z, Suganthan P N, Zhang Q F. Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm and Evolutionary Computation, 2011, 1(1): 32-49
|
[3]
|
Nain P K S, Deb K. A Multi-objective Search and Optimization Procedure with Successive Approximate Models, KanGAL Report 2004012, Indian Institute of Technology Kanpur, India, 2004
|
[4]
|
Jin Y C, Sendhoff B. A systems approach to evolutionary multiobjective structural optimization and beyond. IEEE Computational Intelligence Magazine, 2009, 4(3): 62-76
|
[5]
|
Knowles J. ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Transactions on Evolutionary Computation, 2006, 10(1): 50-66
|
[6]
|
Schmidt M D, Lipson H. Coevolution of fitness predictors. IEEE Transactions on Evolutionary Computation, 2008, 12(6): 736-749
|
[7]
|
Samad A, Kim K Y, Goel T, Haftka R T, Shyy W. Multiple surrogate modeling for axial compressor blade shape optimization. Journal for Propulsion and Power, 2008, 24(2): 302-310
|
[8]
|
Shi L, Rasheed K. A survey of fitness approximation methods applied in evolutionary algorithms. Computational Intelligence in Expensive Optimization Problems, Adaptation Learning and Optimization. Berlin Heidelberg: Springer, 2010. 2: 3-28
|
[9]
|
Jin Y C. Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm and Evolutionary Computation, 2011, 1(2): 61-70
|
[10]
|
Goel T, Vaidyanathan R, Haftka R T, Shyy W, Queipo N V, Tucker K. Response surface approximation of Pareto opimal front in multi-objective optimization. Computer Methods in Applied Mechanics and Engineering, 2007, 196(4-6): 879-893
|
[11]
|
Zhang Q F, Liu W D, Tsang E, Virginas B. Expensive multiobjective optimization by MOEA/D with Gaussian process model. IEEE Transactions on Evolutionary Computation, 2010, 14(3): 456-474
|
[12]
|
Deb K, Nain P K S. An evolutionary multi-objective adaptive meta-modeling procedure using artificial neural networks. Evolutionary Computation in Dynamic and Uncertain Environments. Berlin, Germany: Springer-Verlag, 2007. 51: 297-322
|
[13]
|
Marjavaara B D, Lundström T S, Goel T, Mack Y, Shyy W. Hydraulic turbine diffuser shape optimization by multiple surrogate model approximations of Pareto fronts. Journal of Fluids Engineering, 2007, 129(9): 1228-1240
|
[14]
|
Lim D, Ong Y S, Jin Y C, Sendhoff B. A study on metamodeling techniques, ensembles, and multi-surrogates in evolutionary computation. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation. New York, USA: ACM, 2007. 1288-1295
|
[15]
|
Lim D, Jin Y C, Ong Y S, Sendoff B. Generalizing surrogate-assisted evolutionary computation. IEEE Transactions on Evolutionary Computation, 2010, 14(3): 329-355
|
[16]
|
Acar E, Rais-Rohani M. Ensemble of metamodels with optimized weight factors. Structural and Multidisciplinary Optimization, 2009, 37(3): 279-294
|
[17]
|
Shi L, Rasheed K. ASAGA: an adaptive surrogate-assisted genetic algorithm. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation. New York, USA: ACM, 2008. 1049-1056
|
[18]
|
Guo G, Li W, Yang B, Li W, Yin C. Predicting Pareto dominance in multi-objective optimization using pattern recognition. In: Proceedings of the 2012 International Conference on Intelligent System Design and Engineering Application (ISDEA). Sanya, China: IEEE, 2012. 456-459
|
[19]
|
Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of the 1st International Conference on Genetic Algorithms. New Jersey, USA: Lawrence Erlbaum, 1987. 93-100
|
[20]
|
Guo G Q, Yin C, Yan T S, Li W B. Binary nearest neighbor classification of predicting Pareto dominance in multi-objective optimization. In: Proceedings of the 2012 International Conference on Swarm Intelligence, Part I, LNCS 7331. Berlin: Springer-Verlag, 2012. 537-545
|
[21]
|
Guo G Q, Yin C, Yan T S, Li W. Nearest neighbor classification of Pareto dominance in multi-objective optimization. In: Proceedings of the 5th IEEE International Conference on Advanced Computational Intelligence. Nanjing, China: IEEE, 2012. 328-331
|
[22]
|
Fonseca C M, Fleming P J. Multiobjective optimization and multiple constraint handling with evolutionary algorithm Part Ⅱ: Application example. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 1998, 28(1): 38-47
|
[23]
|
Kursawe F. A variant of evolution strategies for vector optimization. Parallel Problem Solving from Nature, Schwefel I H P, Manner R (eds.), Berlin, Germany: Springer, 1990. 193-197
|
[24]
|
Zilter E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms: empirical results. Evolutionary Computation, 2000, 8(2): 173-195
|
[25]
|
Deb K, Thiele L, Laumanns M, Zitzler E. Scalable multi-objective optimization test problems. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC'02). Honolulu, HI: IEEE, 2002. 825-830
|