2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于概率假设密度滤波方法的多目标跟踪技术综述

杨峰 王永齐 梁彦 潘泉

杨峰, 王永齐, 梁彦, 潘泉. 基于概率假设密度滤波方法的多目标跟踪技术综述. 自动化学报, 2013, 39(11): 1944-1956. doi: 10.3724/SP.J.1004.2013.01944
引用本文: 杨峰, 王永齐, 梁彦, 潘泉. 基于概率假设密度滤波方法的多目标跟踪技术综述. 自动化学报, 2013, 39(11): 1944-1956. doi: 10.3724/SP.J.1004.2013.01944
YANG Feng, WANG Yong-Qi, LIANG Yan, PAN Quan. A Survey of PHD Filter Based Multi-target Tracking. ACTA AUTOMATICA SINICA, 2013, 39(11): 1944-1956. doi: 10.3724/SP.J.1004.2013.01944
Citation: YANG Feng, WANG Yong-Qi, LIANG Yan, PAN Quan. A Survey of PHD Filter Based Multi-target Tracking. ACTA AUTOMATICA SINICA, 2013, 39(11): 1944-1956. doi: 10.3724/SP.J.1004.2013.01944

基于概率假设密度滤波方法的多目标跟踪技术综述

doi: 10.3724/SP.J.1004.2013.01944
基金项目: 

国家自然科学基金(61374159,61203224,61135001,61074179),中国航空科学基金(20125153027)资助

详细信息
    作者简介:

    杨峰 西北工业大学副教授. 主要研究方向为信息融合, 目标跟踪, 雷达数据处理. E-mail: yangfeng@nwpu.edu.cn

A Survey of PHD Filter Based Multi-target Tracking

Funds: 

Supported by National Natural Science Foundation of China (61374159, 61203224, 61135001, 61074179), Aviation Science Foundation of China (20125153027)

  • 摘要: 概率假设密度 (Probability hypothesis density, PHD) 滤波方法在多目标跟踪、交通管制、图像处理以及多传感器管理等领域得到了广泛关注. 本文对基于PHD滤波方法的多目标跟踪技术的产生、发展及研究现状进行了综述, 主要包括PHD滤波器、PHD执行方法、峰值提取及航迹提取技术、多传感器多目标跟踪及多传感器管理、 PHD平滑器以及多目标跟踪性能评价指标等, 并对PHD滤波器的相关应用进行介绍. 最后, 基于现有PHD滤波进展, 提出了PHD滤波技术在多目标跟踪领域需要重点关注的若干问题.
  • [1] Mahler R P S. Multitarget Bayes fltering via frst-order multitarget moments. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152-1178
    [2] Mahler R P. Statistical Multisource-Multitarget Informa-tion Fusion. Norwood: Artech House, 2007
    [3] Bar-Shalom Y. Tracking and Data Association. San Diego: Academic Press, 1988
    [4] Bar-Shalom Y, Kirubarajan T, Lin X. Probabilistic data association techniques for target tracking with applications to sonar, radar and EO sensors. IEEE Aerospace and Elec-tronic Systems Magazine, 2005, 20(8): 37-56
    [5] Musicki D, Evans R. Joint integrated probabilistic data association: JIPDA. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(3): 1093-1099
    [6] Blackman S S. Multiple hypothesis tracking for multiple target tracking. IEEE Aerospace and Electronic Systems Magazine, 2004, 19(1): 5-18
    [7] Erdinc O, Willett P, Bar-Shalom Y. A physical-space ap-proach for the probability hypothesis density and cardinal-ized probability hypothesis density flters. In: Proceedings of the 2006 Signal and Data Processing of Small Targets. Orlando, FL: SPIE, 2006. 623619-623619-12
    [8] Erdinc O, Willett P, Bar-Shalom Y. Probability hypoth-esis density flter for multitarget multisensor tracking. In: Proceedings of the 8th International Conference on Infor-mation Fusion. Philadelphia, PA: IEEE, 2005. 25-29
    [9] Mahler R. A theory of PHD flters of higher order in tar-get number. In: Proceedings of the 2006 Signal and Data Processing of Small Targets. Orlando, FL: SPIE, 2006.62350K-62350K-12
    [10] Mahler R. PHD flters of higher order in target number. IEEE Transactions on Aerospace and Electronic Systems,2007, 43(4): 1523-1543
    [11] Vo B T, Vo B N, Cantoni A. Performance of PHD based multi-target flters. In: Proceedings of the 9th Interna-tional Conference on Information Fusion. Florence: IEEE,2006. 1-8
    [12] Mahler R. The multisensor PHD flter: I. General solution via multitarget calculus. In: Proceedings of the 2009 SPIE Defense, Security, and Sensing on International Society for Optics and Photonics. Orlando, FL: SPIE, 2009. 73360D-73360D-12
    [13] Mahler R, Lockheed Martin M S, Eagan M N. Second-generation PHD/CPHD flters and multitarget calculus. In: Proceedings of the 2009 Signal and Data Processing of Small Targets. Orlando, FL: SPIE, 2009, 7445: 74450I
    [14] Vo B N, Singh S, Boucet A. Sequential Monte Carlo meth-ods for multi-target fltering with random fnite sets. IEEE Transactions on Aerospace and Electronic Systems. 2005,41(4): 1224-1245
    [15] Vo B N, Ma W K. The Gaussian mixture probability hy-pothesis density flter. IEEE Transactions on Signal Pro-cessing, 2006, 54(11): 4091-4104
    [16] Clark D, Vo B T, Vo B N. Gaussian particle implemen-tations of probability hypothesis density flters. In: Pro-ceedings of the 2007 IEEE Aerospace Conference. Big Sky, MT: IEEE, 2007. 1-11
    [17] Ouyang C, Ji H B. Weight over-estimation problem in GMP-PHD flter. Electronics Letters, 2011, 47(2):139-141
    [18] Nandakumaran N, Sutharsan S, Tharmarasa R, Lang T, Kirubarajan T, Kirubarajan T. Rao-blackwellised approx-imate conditional mean probability hypothesis density fl-tering. In: Proceedings of the 2009 Signal and Data Pro-cessing of Small Targets. Orlando, FL: SPIE, 2009, 7445:74450J-1
    [19] Melzi M, Ouldali A. Joint multiple target tracking and classifcation using the unscented Kalman particle PHD fl-ter. In: Proceedings of the 9th International New Circuits and Systems Conference. Bordeaux: IEEE, 2011. 534-537
    [20] Pace M, Zhang H L. Grid based PHD fltering by fast Fourier transform. In: Proceedings of the 14th Interna-tional Conference on Information Fusion. Chicago, IL: IEEE, 2011. 1-8
    [21] Clark D E, Bell J. Convergence results for the particle PHD flter. IEEE Transactions on Signal Processing, 2006,54(7): 2652-2661
    [22] Johansen A M, Singh S S, Doucet A, Vo B N. Convergence of the SMC implementation of the PHD flter. Methodol-ogy and Computing in Applied Probability, 2006, 8(2):265-291
    [23] Clark D E, Vo B N. Convergence analysis of the Gaussian mixture PHD flter. IEEE Transactions on Signal Process-ing, 2007, 55(4): 1204-1212
    [24] Ristic B, Clark D E, Vo B N. Improved SMC implemen-tation of the PHD flter. In: Proceedings of the 13th In-ternational Conference on Information Fusion. Edinburgh, UK: IEEE, 2010. 1-8
    [25] Pace M, Del Moral P, Caron F. Comparison of implemen-tations of Gaussian mixture PHD flters. In: Proceedings of the 13th International Conference on Information Fu-sion. Edinburgh, UK: IEEE, 2010. 1-8
    [26] Fearnhead P, Clifford P. On-line inference for hidden Markov models via particle flters. Journal of the Royal Statistical Society: Series B (Statistical Methodology),2003, 65(4): 887-899
    [27] Mahler R. Linear-complexity CPHD flters. In: Proceed-ings of the 13th International Conference on Information Fusion. Edinburgh, UK: IEEE, 2010. 1-8
    [28] Macagnano D, Freitas de Abreu G T. Adaptive gating for multitarget tracking with Gaussian mixture flters. IEEE Transactions on Signal Processing, 2012, 60(3):1533-1538
    [29] Clark D, Ristic B, Vo B N, Vo B T. Bayesian multi-object fltering with amplitude feature likelihood for unknown ob-ject SNR. IEEE Transactions on Signal Processing, 2010,58(1): 26-37
    [30] Lin L, Bar-Shalom Y, Kirubarajan T. Data association combined with the probability hypothesis density flter for multitarget tracking. In: Proceedings of the the 2004 SPIE conference on Signal and Data Processing on Small Tar-gets. Orlando, Florida: SPIE, 2004. 464-475
    [31] Panta K, Vo B N, Singh S, Doucet A. Probability hypoth-esis density flter versus multiple hypothesis tracking. In: Proceedings of the 2004 SPIE Conference on Signal Pro-cessing, Sensor Fusion and Target Recognition. Orlando, FL: SPIE, 2004. 284-295
    [32] Papi F, Battistelli G, Chisci L, Morrocchi S, Farina A, Graziano A. Multitarget tracking via joint PHD fltering and multiscan association. In: Proceedings of the 12th International Conference on Information Fusion. Seattle, WA: IEEE, 2009. 1163-1170
    [33] Lin L, Bar-Shalom Y, Kirubarajan T. Track labeling and PHD flter for multitarget tracking. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 778-795
    [34] Danu D G, Lang T, Kirubarajan T. Assignment-based par-ticle labeling for PHD particle flter. In: Proceedings of the2009 SPIE conference on Signal and Data Processing on Small Targets. Orlando, FL: SPIE, 2009, 7445: 74450D-1
    [35] Clark D E, Bell J. Multi-target state estimation and track continuity for the particle PHD flter. IEEE Transac-tions on Aerospace and Electronic Systems, 2007, 43(4):1441-1453
    [36] Erdinc O, Willett P, Bar-Shalom Y. The bin-occupancy flter and its connection to the PHD flters. IEEE Trans-actions on Signal Processing, 2009, 57(11): 4232-4246
    [37] Dunne D, Kirubajaran T. Weight partitioned probability hypothesis density flters. In: Proceedings of the 14th In-ternational Conference on Information Fusion. Chicago, IL: IEEE, 2011. 1-8
    [38] Panta K, Clark D E, Vo B N. Data association and track management for the Gaussian mixture probability hypoth-esis density flter. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 1003-1016
    [39] Streit R L. Multisensor multitarget intensity flter. In: Pro-ceedings of the 11th International Conference on Informa-tion Fusion. Cologne: IEEE, 2008. 1-8
    [40] Streit R L, Stone L D. Bayes derivation of multitarget in-tensity flters. In: Proceedings of the 11th International Conference on Information Fusion. Cologne, Germany: IEEE, 2008. 1-8
    [41] Mahler R. The multisensor PHD flter: II. Erroneous solu-tion via `Poisson magic'. In: Proceedings of the 2009 SPIE Defense, Security, and Sensing on International Society for Optics and Photonics. Orlando, FL: SPIE, 2009. 73360D-73360D-12
    [42] Schikora M, Bender D, Koch W, Cremers D. Multitarget, multisensor localization and tracking using passive anten-nas and optical sensors on UAVs. In: Proceedings of the2010 Security and Defence on International Society for Op-tics and Photonics. Bellingham, WA: SPIE, 2010. 783305-783305-9
    [43] Liu W F, Wen C L. A linear multisensor PHD flter using the measurement dimension extension approach. In: Pro-ceedings of the 2nd International Conference on Advances in Swarm Intelligence. Berlin, Heidelberg: Springer, 2011.486-493
    [44] Delande E, Duflos E, Vanheeghe P, Heurguier D. Multi-sensor PHD: construction and implementation by space partitioning. In: Proceedings of the 2011 IEEE Interna-tional Conference on Acoustics, Speech, and Signal Pro-cessing. Prague, Czech Republic: IEEE, 2011. 3632-3635
    [45] Meng F B, Hao Y L, Xia Q X, Ouyang T S, Zou W. A particle PHD flter for multi-sensor multi-target tracking based on sequential fusion. In: Proceedings of the 2009 International Conference on Information Engineering and Computer Science. Wuhan, China: IEEE, 2009. 1-5
    [46] Mahler R. Approximate multisensor CPHD and PHD fl-ters. In: Proceedings of the 13th International Conference on Information Fusion. Edinburgh, UK: IEEE, 2010. 1-8
    [47] Anderson B D O, Moore J B. Optimal Filtering. Engle-wood Cliffs, NJ: Prentice-Hall, 1979
    [48] Harvey A C. Forecasting, Structural Time Series Models and the Kalman Filter. New York: Cambridge University Press, 1989
    [49] Bar-Shalom Y, Li X R. Multitarget-Multisensor Tracking: Principles and Techniques. Storrs, CT: University of Con-necticut, 1995
    [50] Bar-Shalom Y, Li X R, Kirubarajan T. Estimation with Applications to Tracking and Navigation. New York: Wi-ley, 2001
    [51] Clark D. Joint target-detection and tracking smoothers. In: Proceedings of the 2009 SPIE Defense, Security, and Sensing on International Society for Optics and Photonics. Orlando, FL: SPIE, 2009. 73360G-73360G-11
    [52] Mahler R P S. Statistical Multisource-Multitarget Infor-mation Fusion. Norwood: Artech House, 2007
    [53] Vo B T. Random Finite Sets in Multi-Object Filtering [Ph. D. dissertation], University ofWestern Australia, Aus-tralia, 2008
    [54] Vo B N, Vo B T, Mahler R P S. Closed-form solutions to forward-backward smoothing. IEEE Transactions on Sig-nal Processing, 2012, 60(1): 2-17
    [55] Clark D E, Vo B T, Vo B N. Forward-backward sequen-tial Monte Carlo smoothing for joint target detection and tracking. In: Proceedings of the 12th International Con-ference of Information Fusion. Seattle, WA: IEEE, 2009.899-906
    [56] Nandakumaran N, Punithakumar K, Kirubarajan T. Im-proved multi-target tracking using probability hypothesis density smoothing. In: Proceedings of the 2007 Signal and Data Processing of Small Targets. San Diego, CA: SPIE,2007, 6699: 66990M
    [57] Nandakumaran N, Kirubarajan T. Maneuvering target tracking using probability hypothesis density smoothing. In: Proceedings of the 2009 SPIE conference on Signal Pro-cessing, Sensor Fusion, and Target Recognition. Orlando, FL: SPIE, 2009, 7336: 73360F-1
    [58] Clark D E. First-moment multi-object forward-backward smoothing. In: Proceedings of the 13th International Con-ference of Information Fusion. Edinburgh: IEEE, 2010.1-6
    [59] Nagappa S, Clark D E. Fast sequential Monte Carlo PHD smoothing. In: Proceedings of the 14th International Con-ference of Information Fusion. Chicago, IL: IEEE, 2011.1-7
    [60] Rothrock R L, Drummond O E. Performance metrics for multiple-sensor multiple-target tracking. In: Proceedings of the 2000 International Society for Optics and Photonics. Orlando, FL: SPIE, 2000. 521-531
    [61] Hoffman J R, Mahler R P S. Multitarget miss distance via optimal assignment. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2004,34(3): 327-336
    [62] Schuhmacher D, Vo B T, Vo B N. A consistent met-ric for performance evaluation of multi-object flters. IEEE Transactions on Signal Processing, 2008, 56(8):3447-3457
    [63] Ristic B, Vo B N, Clark D. Performance evaluation of multi-target tracking using the OSPA metric. In: Proceed-ings of the 13th International Conference of Information Fusion. Edinburgh: IEEE, 2010. 1-7
    [64] Ristic B, Vo B N, Clark D, Vo B T. A metric for per-formance evaluation of multi-target tracking algorithms. IEEE Transactions on Signal Processing, 2011, 59(7):3452-3457
    [65] Nagappa S, Clark D E, Mahler R. Incorporating track uncertainty into the OSPA metric. In: Proceedings of the 14th International Conference of Information Fusion. Chicago, IL: IEEE, 2011. 1-8
    [66] Granstrom K, Lundquist C, Orguner U. A Gaussian mix-ture PHD flter for extended target tracking. In: Proceed-ings of the 13th International Conference on Information Fusion. Edinburgh: IEEE, 2010. 1-8
    [67] Sidenbladh H. Multi-target particle fltering for the proba-bility hypothesis density. In: Proceedings of the 6th Inter-national Conference of Information Fusion. Cairns, Aus-tralia: IEEE, 2003. 800-806
    [68] Ulmke M, Erdinc O, Willett P. GMTI tracking via the Gaussian mixture cardinalized probability hypothesis den-sity flter. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 1821-1833
    [69] Kohlleppel R. Ground moving target tracking of PAMIR detections with a Gaussian mixture-PHD flter. In: Pro-ceedings of the 2011 International Radar Symposium. Leipzig: IEEE, 2011. 193-198
    [70] Sidenbladh H, Wirkander S L. Tracking random sets of vehicles in terrain. In: Proceedings of the 2003 Conference on Computer Vision and Pattern Recognition Workshop. Madison, Wisconsin, USA: IEEE, 2003. 98
    [71] Punithakumar K, Kirubarajan T, Sinha A. A sequential Monte Carlo probability hypothesis density algorithm for multitarget track-before-detect. In: Proceedings of the2005 SPIE. San Diego, California: SPIE, 2005, 5913:59131S
    [72] Tong H S, Zhang H, Meng H D, Wang X Q. Multitarget tracking before detection via probability hypothesis den-sity flter. In: Proceedings of the 2010 International Con-ference on Electrical and Computer Engineering. Wuhan, China: IEEE, 2010. 1332-1335
    [73] Habtemariam B K, Tharmarasa R, Kirubarajan T. PHD flter based track-before-detect for MIMO radars. Signal Processing, 2012, 92(3): 667-678
    [74] Punithakumar K, Kirubarajan T, Sinha A. A multiple-model probability hypothesis density flter for tracking ma-neuvering targets. In: Proceedings of the 2004 Signal and Data Proceedings of Small Targets. Orlando, FL: SPIE,2004. 113-121
    [75] Pasha A, Vo B, Tuan H D, Ma W K. Closed form PHD fltering for linear jump Markov models. In: Proceedings of the 9th International Conference on Information Fusion. Sunnyvale, CA: IEEE, 2006. 1-8
    [76] Pasha S A, Vo B N, Tuan H D, Ma W K. A Gaussian mixture PHD flter for jump Markov system models. IEEE Transactions on Aerospace and Electronic Systems, 2009,45(3): 919-936
    [77] Wood T M. Interacting methods for manoeuvre handling in the GM-PHD flter. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 3021-3025
    [78] Ahlberg S, Hörling P, Jöred K, Mårtenson C, Neider G, Schubert J, Sidenbladh H, Svenson P, Svensson P, Undén, Walter J. The IFD03 information fusion demonstrator. In: Proceedings of the 7th International Conference on Infor-mation Fusion. Sunnyvale, CA: IEEE, 2004. 936-943
    [79] Clark D, Godsill S. Group target tracking with the Gaus-sian mixture probability hypothesis density flter. In: Pro-ceedings of the 3rd International Conference on Intelligent Sensors, Sensor Networks and Information. Melbourne, Qld.: IEEE, 2007. 149-154
    [80] Wang Y D, Wu J K, Kassim A A, Huang W M. Tracking a variable number of human groups in video using probabil-ity hypothesis density. In: Proceedings of the 18th Inter-national Conference on Pattern Recognition. Hong Kong, China: IEEE, 2006. 1127-1130
    [81] Gilholm K, Godsill S, Maskell S, Salmond D. Poisson mod-els for extended target and group tracking. In: Proceedings of the 2005 SPIE conference on Signal and Data Process-ing on Small Targets. San Diego, California, USA: SPIE,2005, 5913: 59130R
    [82] Mahler R. PHD flters for nonstandard targets, I: extended targets. In: Proceedings of the 12th International Con-ference on Information Fusion. Seattle, WA: IEEE, 2009.915-921
    [83] Subramaniam M, Tharmarasa R, McDonald M, Kirubara-jan T. Passive tracking with sensors of opportunity using passive coherent location. In: Proceedings of the 2008 In-ternational Society for Optics and Photonics. Orlando, FL: SPIE, 2008. 69691F-69691F-12
    [84] Kemper J, Hauschildt D. Passive infrared localization with a probability hypothesis density flter. In: Proceedings of the 7th Workshop on Positioning Navigation and Commu-nication. Dresden: IEEE, 2010. 68-76
    [85] Tobias M, Lanterman A D. Probability hypothesis density-based multitarget tracking with bistatic range and Doppler observations. IEE Proceedings-Radar, Sonar, and Naviga-tion, 2005, 152(3): 195-205
    [86] Balakwmar B, Sinha A, Kirubarajan T, Reilly J P. PHD fltering for tracking an unknown number of sources using an array of sensors. In: Proceedings of the 13th Workshop on Statistical Signal Processing. Novosibirsk: IEEE, 2005.43-48
    [87] Maggio E, Taj M, Cavallaro A. E±cient multitarget visual tracking using random fnite sets. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(8):1016-1027
    [88] Pham N T, Huang W M, Ong S H. Tracking multiple ob-jects using probability hypothesis density flter and color measurement. In: Proceedings of the 2007 IEEE Inter-national Conference on Multimedia and Expo. Beijing, China, IEEE, 2007. 1511-1514
    [89] Juang R R, Levchenko A, Burlina P. Tracking cell motion using GM-PHD. In: Proceedings of the 2009 IEEE Inter-national Symposium on Biomedical Imaging: From Nano to Macro. Boston, MA: IEEE, 2009. 1154-1157
    [90] Battistelli G, Chisci L, Morrocchi S, Papi F, Benavoli A, Di Lallo A, Farina A, Graziano A. Tra±c intensity estimation via PHD fltering. In: Proceedings of the 2008 European Radar Conference. Amsterdam: IEEE, 2008. 340-343
    [91] Guerriero M, Coraluppi S, Willett P. Analysis of scan and batch processing approaches to static fusion in sensor net-works. In: Proceedings of the 2008 International Soci-ety for Optics and Photonics. Orlando, FL: SPIE, 2008.69690Z-69690Z-10
    [92] Mahler R. Multitarget sensor management of dispersed mobile sensors. Theory and Algorithms for Cooperative Systems, New York: Springer, 2005
    [93] Mahler R. Sensor management with non-ideal sensor dy-namics. In: Proceedings of the 2004 International Confer-ence on Information Fusion. Sunnyvale, CA: IEEE, 2004
    [94] El-Fallah A, Zatezalo A, Mahler R K, Donatelli D. Space-based sensor management and geostationary satellites tracking. In: Proceedings of the 2007 International Soci-ety for Optics and Photonics. Orlando, FL: SPIE, 2007.65670R-65670R-12
    [95] Zatezalo A, El-Fallah A, Mahler R K, Pham K. Joint search and sensor management for geosynchronous satel-lites. In: Proceedings of the 2008 International Society for Optics and Photonics. Orlando, FL: SPIE, 2008. 69680O-69680O-12
    [96] El-Fallah A, Zatezalo A, Mahler R K, Donatelli D. Dy-namic sensor management of dispersed and disparate sen-sors for tracking resident space objects. In: Proceedings of the 2008 International Society for Optics and Photonics. Orlando, FL: SPIE, 2008. 69680P-69680P-11
    [97] Zatezalo A, El-Fallah A, Mahler R K, Brown J. Dispersed and disparate sensor management for tracking low earth orbit satellites. In: Proceedings of the 2009 International Society for Optics and Photonics. Orlando, FL: SPIE,2009. 73360I-73360I-12
    [98] Mahler R, El-Fallah A. Unifed sensor management in un-known dynamic clutter. In: Proceedings of the 2010 Inter-national Society for Optics and Photonics. Orlando, FL: SPIE, 2010. 769811-769811-12
    [99] Tian Shu-Rong, Wang Guo-Hong, He You. Multi-target tracking with probability hypothesis density particle flter. Journal of Naval Aeronautical Engineering Institute, 2007,22(4): 417-420, 430 (田淑荣, 王国宏, 何友. 多目标跟踪的概率假设密度粒子滤波. 海军航空土程学院学报, 2007, 22(4): 417-420, 430)
    [100] Zhuang Ze-Sen, Zhang Jian-Qiu, Yin Jian-Jun. Rao-Blackwellized particle probability hypothesis density fl-ter. Acta Aeronautica et Astronautica Sinica, 2009, 30(4):698-705 (庄泽森, 张建秋, 尹建君. Rao-Blackwellized 粒子概率假设密度滤波算法. 航空学报, 2009, 30(4): 698-705)
    [101] Yin Y J, Zhang J Q, Zhuang Z S. Gaussian sum PHD flter-ing algorithm for nonlinear non-Caussian models. Chinese Journal of Aeronautics, 2008, 21(4): 341-351
    [102] Zhou Cheng-Xing, Liu Gui-Xi, Hou Lian-Yong, Zhong Xing-Zhi. Modifed Gaussian particle probability hypothe-sis density fltering algorithm. Control Theory and Appli-cations, 2011, 30(4): 1005-1008 (周承兴, 刘贵喜, 侯连勇, 钟兴质. 改进的高斯粒子概率假设密度滤波算法. 控制理论与应用, 2011, 30(4): 1005-1008)
    [103] Lian Feng, Han Chong-Zhao, Liu Wei-Feng, Yuan Xiang-Hui. Multiple-model probability hypothesis density smoother. Acta Automatica Sinica, 2010, 30(4): 939-950 (连峰, 韩崇绍, 刘伟峰, 元向辉. 多模型概率假设密度平滑器. 自动化学报, 2010, 30(4): 939-950)
    [104] Meng Fan-Bin, Hao Yan-Ling, Zhou Wei-Dong, Sun Feng. Sequential particle PHD flter algorithm based on radar and infrared sensor. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2010,38(4): 14-17 (孟凡彬, 郝燕玲, 周卫东, 孙枫. 基于雷达和红外的序贯粒子PHD 滤波融合算法. 华中科技大学学报(自然科学版), 2010, 38(4):14-17)
    [105] Wu Jing-Jing, Hu Shi-Qiang. Probability hypothesis den-sity flter based multi-target visual tracking. Control and Decision, 2010, 25(12): 1861-1865 (吴静静, 胡士强. 基于概率假设密度的多目标视频跟踪算法. 控制与决策, 2010, 25(12): 1861-1865)
    [106] Huang Zhi-Bei, Sun Shu-Yan, Wu Jian-Kang. Multiple hy-potheses detection with Gaussian mixture probability hy-pothesis density flter for multi-target trajectory tracking. Journal of Electronics and Information Technology, 2010,32(6): 1289-1294 (黄志蓓, 孙树岩, 吴健康. 多元假设检验GMPHD 轨迹跟踪. 电子与信息学报, 2010, 32(6): 1289-1294)
    [107] Tan Shun-Cheng, Wang Guo-Hong, Wang Na, Jia Shu-Yi. Multi-target tracking based on PHD flter and data association. Systems Engineering and Electronics, 2011,33(4): 734-737 (谭顺成, 王国宏, 王娜, 贾舒宜. 基于PHD 滤波和数据关联的多目标跟踪. 系统工程与电子技术, 2011, 33(4): 734-737)
    [108] Wang Xiao, Han Chong-Zhao. A probability hypothesis density flter with multiple models for maneuvering tar-get tracking. Journal of Xi0an Jiaotong University, 2011,45(12): 1-5 (王晓, 韩崇昭. 用于机动目标跟踪的多模型概率假设密度滤波器. 西安交通大学学报, 2011, 45(12): 1-5)
    [109] Yan Xiao-Xi, Han Chong-Zhao. Multiple target tracking algorithm based on online estimation of target birth inten-sity. Acta Automatica Sinica, 2011, 37(8): 963-972 (闫小喜, 韩崇昭. 基于目标出生强度在线估计的多目标跟踪算法. 自动化学报, 2011, 37(8): 963-972)
    [110] Wang Pin, Xie Wei-Xin, Liu Zong-Xiang, Guo Dong. The course angle aided Gaussian mixture PHD fuzzy flter. Sig-nal Processing, 2011, 27(9): 1319-1324 (王品, 谢维信, 刘宗香, 郭栋. 航向角辅助的高斯混合PHD 模糊滤波方法. 信号处理, 2011, 27(9): 1319-1324)
    [111] Lian Feng, Han Chong-Zhao, Liu Wei-Feng, Yuan Xiang-Hui. Convergence analysis of the Gaussian mixture extended-target probability hypothesis density flter. Acta Automatica Sinica, 2012, 38(8): 1343-1352 (连峰, 韩崇昭, 刘伟峰, 元向辉. 高斯混合扩展目标概率假设密度滤波器的收敛性分析. 自动化学报, 2012, 38(8): 1343-1352)
  • 加载中
计量
  • 文章访问数:  2342
  • HTML全文浏览量:  154
  • PDF下载量:  3116
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-01
  • 修回日期:  2013-08-28
  • 刊出日期:  2013-11-20

目录

    /

    返回文章
    返回