2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数据的自学习优化控制:研究进展与展望

刘德荣 李宏亮 王鼎

刘德荣, 李宏亮, 王鼎. 基于数据的自学习优化控制:研究进展与展望. 自动化学报, 2013, 39(11): 1858-1870. doi: 10.3724/SP.J.1004.2013.01858
引用本文: 刘德荣, 李宏亮, 王鼎. 基于数据的自学习优化控制:研究进展与展望. 自动化学报, 2013, 39(11): 1858-1870. doi: 10.3724/SP.J.1004.2013.01858
LIU De-Rong, LI Hong-Liang, WANG Ding. Data-based Self-learning Optimal Control: Research Progress and Prospects. ACTA AUTOMATICA SINICA, 2013, 39(11): 1858-1870. doi: 10.3724/SP.J.1004.2013.01858
Citation: LIU De-Rong, LI Hong-Liang, WANG Ding. Data-based Self-learning Optimal Control: Research Progress and Prospects. ACTA AUTOMATICA SINICA, 2013, 39(11): 1858-1870. doi: 10.3724/SP.J.1004.2013.01858

基于数据的自学习优化控制:研究进展与展望

doi: 10.3724/SP.J.1004.2013.01858
基金项目: 

国家自然科学基金(61034002,61233001,61273140)资助

详细信息
    作者简介:

    刘德荣 中国科学院自动化研究所研究员. 主要研究方向为智能控制理论及应用, 自适应动态规划, 人工神经网络, 计算神经科学, 电力系统运行与控制. E-mail: derong.liu@ia.ac.cn

Data-based Self-learning Optimal Control: Research Progress and Prospects

Funds: 

Supported by National Natural Science Foundation of China (61034002, 61233001, 61273140)

  • 摘要: 自适应动态规划(Adaptive dynamic programming, ADP)方法可以解决传统动态规划中的"维数灾"问题, 已经成为控制理论和计算智能领域最新的研究热点. ADP方法采用函数近似结构来估计系统性能指标函数, 然后依据最优性原理来获得近优的控制策略. ADP是一种具有学习和优化能力的智能控制方法, 在求解复杂非线性系统的最优控制问题中具有极大的潜力. 本文对ADP的理论研究、算法实现、相关应用等方面进行了全面的梳理, 涵盖了最新的研究进展, 并对ADP的未来发展趋势进行了分析和展望.
  • [1] Bellman R E. Dynamic Programming. Princeton, NJ: Princeton University Press, 1957
    [2] Sutton R S, Barto A G. Reinforcement Learning: An Introduction. Cambridge, MA: MIT Press, 1998
    [3] Doya K. Reinforcement learning in continuous time and space. Neural Computation, 2000, 12(1): 219-245
    [4] Murray J J, Cox C J, Lendaris G G, Saeks R. Adaptive dynamic programming. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 2002, 32(2): 140-153
    [5] Prokhorov D V, Wunsch D C. Adaptive critic designs. IEEE Transactions on Neural Networks, 1997, 8(5): 997-1007
    [6] Werbos P J. Approximate dynamic programming for real-time control and neural modeling. Handbook of Intelligent Control: Neural, Fuzzy and Adaptive Approaches. New York: Van Nostrand, 1992
    [7] Bertsekas D P, Tsitsiklis J N. Neuro-Dynamic Programming. Belmont, MA: Athena Scientific, 1996
    [8] Lewis F L, Huang J, Parisini T, Prokhorov D V, Wunsch D C. Special issue on neural networks for feedback control systems. IEEE Transactions on Neural Networks, 2007, 18(4): 969-972
    [9] Lewis F L, Lendaris G, Liu D. Special issue on adaptive dynamic programming and reinforcement learning in feeedback control. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 38(4): 896-897
    [10] Ferrari S, Sarangapani J, Lewis F L. Special issue on approximate dynamic programming and reinforcement learning. Journal of Control Theory and Applications, 2011, 9(3): 309
    [11] White D A, Sofge D A. Handbook of Intelligent Control: Neural, Fuzzy and Adaptive Approaches. New York: Van Nostrand, 1992
    [12] Si J, Barto A G, Powel W B, Wunsch D C. Handbook of Learning and Approximate Dynamic Programming. Piscataway, NJ: IEEE, 2004
    [13] Powel W B. Approximate Dynamic Programming: Solving the Curses of Dimensionality. Hoboken, NJ: Wiley, 2007
    [14] Lucian B, Robert B, Bart S, Damien E. Reinforcement Learning and Dynamic Programming Using Function Approximators. Boca Raton, FL: CRC Press, 2010
    [15] Lewis F L, Liu D R. Reinforcement Learning and Approximate Dynamic Programming for Feedback Control. Hoboken, NJ: Wiley, 2013
    [16] Shan Q H, Liu D R, Luo Y H, Wang D. Adaptive Dynamic Programming for Control: Algorithms and Stability. London, UK: Springer, 2013
    [17] Xu Xin. Reinforcement Learning and Approximate Dynamic Programming. Beijing: Science Press, 2010(徐昕. 增强学习与近似动态规划. 北京: 科学出版社, 2010)
    [18] Lewis F L, Vrabie D. Reinforcement learning and adaptive dynamic programming for feedback control. IEEE Circuits and Systems Magazine, 2009, 9(3): 32-50
    [19] Wang F Y, Zhang H G, Liu D R. Adaptive dynamic programming: an introduction. IEEE Computational Intelligence Magazine, 2009, 4(2): 39-47
    [20] Lewis F L, Vrabie D, Vamvoudakis K. Reinforcement learning and feedback control: using natural decision methods to design optimal adaptive controllers. IEEE Control Systems Magazine, 2012, 32(6): 76-105
    [21] Xu Xin, Shen Dong, Gao Yan-Qing, Wang Kai. Learning control of dynamical systems based on Markov decision processes: research frontiers and outlooks. Acta Automatica Sinica, 2012, 38(5): 673-687(徐昕, 沈栋, 高岩青, 王凯. 基于马氏决策过程模型的动态系统学习控制: 研究前沿与展望. 自动化学报, 2012, 38(5): 673-687)
    [22] Zhang Hua-Guang, Zhang Xin, Luo Yan-Hong, Yang Jun. An overview of research on adaptive dynamic programming. Acta Automatica Sinica, 2013, 39(4): 303-311(张化光, 张欣, 罗艳红, 杨珺. 自适应动态规划综述. 自动化学报, 2013, 39(4): 303-311)
    [23] Geist M, Pietquin O. Algorithmic survey of parametric value function approximation. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(6): 845-867
    [24] Al-Tamimi A, Lewis F L, Abu-Khalaf M. Discrete-time nonlinear HJB solution using approximate dynamic programming: convergence proof. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 38(4): 943-949
    [25] Dierks T, Thumati B T, Jagannathan S. Optimal control of unknown affine nonlinear discrete-time systems using offline-trained neural networks with proof of convergence. Neural Networks, 2009, 22(5-6): 851-860
    [26] Zhang H G, Wei Q L, Luo Y H. A novel infinite-time optimal tracking control scheme for a class of discrete-time non-linear systems via the greedy HDP iteration algorithm. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 38(4): 937-942
    [27] Zhang H G, Luo Y H, Liu D R. Neural-network-based near-optimal control for a class of discrete-time affine nonlinear systems with control constraints. IEEE Transactions on Neural Networks, 2009, 20(9): 1490-1503
    [28] Zhang H G, Song R Z, Wei Q L, Zhang T Y. Optimal tracking control for a class of nonlinear discrete-time systems with time delays based on heuristic dynamic programming. IEEE Transactions on Neural Networks, 2011, 22(12): 1851-1862
    [29] Wang F Y, Jin N, Liu D E, Wei Q L. Adaptive dynamic programming for finite-horizon optimal control of discrete-time nonlinear systems with ε-error bound. IEEE Transactions on Neural Networks, 2011, 22(1): 24-36
    [30] Heydari A, Balakrishnan S N. Finite-horizon control-constrained nonlinear optimal control using single network adaptive critics. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(1): 145-157
    [31] Wang D, Liu D R, Wei Q L, Zhao D B, Jin N. Optimal control of unknown nonaffine nonlinear discrete-time systems based on adaptive dynamic programming. Automatica, 2012, 48(8): 1825-1832
    [32] Chen Z, Jagannathan S. Generalized Hamilton-Jacobi-Bellman formulation-based neural network control of affine nonlinear discrete time systems. IEEE Transactions on Neural Networks, 2008, 19(1): 90-106
    [33] Watkins C J C H, Dayan P. Q-Learning. Machine Learning, 1992, 8: 279-292
    [34] Liu D R, Wei Q L. Finite-approximation-error based optimal control approach for discrete-time nonlinear systems. IEEE Transactions on Cybernetics, 2013, 43(2): 779-789
    [35] Seong C Y, Widrow B. Neural dynamic optimization for control systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2001, 31(4): 482-513
    [36] Lewis F L, Vamvoudakis K G. Reinforcement learning for partially observable dynamic processes: adaptive dynamic programming using measured output data. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2011, 41(1): 14-25
    [37] He P A, Jagannathan S. Reinforcement learning neural-network-based controller for nonlinear discrete-time systems with input constraints. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2007, 37(2): 425-436
    [38] Yang L, Si J, Tsakalis K S, Rodriguez A A. Direct heuristic dynamic programming for nonlinear tracking control with filtered tracking error. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2009, 39(6): 1617-1622
    [39] Yang Q M, Jagannathan S. Reinforcement learning controller design for affine nonlinear discrete-time systems using online approximators. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2012, 42(2): 377-390
    [40] Yang Q M, Vance J B, Jagannathan S. Control of nonaffine nonlinear discrete-time systems using reinforcement-learning-based linearly parameterized neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 38(4): 994-1001
    [41] Dierks T, Jagannathan S. Online optimal control of affine nonlinear discrete-time systems with unknown internal dynamics by using time-based policy update. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(7): 1118-1129
    [42] Kleinman D. On an iterative technique for Riccati equation computations. IEEE Transactions on Automatic Control, 1968, 13(1): 114-115
    [43] Saridis G N, Lee C S. An approximation theory of optimal control for trainable manipulators. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(3): 152-159
    [44] Wang F Y, Saridis G N. Suboptimal control for nonlinear stochastic systems. In: Proceedings of the 31st IEEE Conference on Decision and Control. Tucson, Arizona, USA: IEEE, 1992. 1856-1861
    [45] Saridis G N, Wang F Y. Suboptimal control for nonlinear stochastic systems. Control Theory and Advanced Technology, 1994, 10(4): 847-871
    [46] Wang F Y, Saridis G N. On successive approximation of optimal control of stochastic dynamic systems. Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications. Boston, MA: Kluwer, 2002. 333-386
    [47] Beard R W, Saridis G N, Wen J T. Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation. Automatica, 1997, 33(12): 2159-2177
    [48] Abu-Khalaf M, Lewis F L. Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach. Automatica, 2005, 41(5): 779-791
    [49] Cheng T, Lewis F L, Abu-Khalaf M. Fixed-final-time-constrained optimal control of nonlinear systems using neural network HJB approach. IEEE Transactions on Neural Networks, 2007, 18(6): 1725-1736
    [50] Cheng T, Lewis F L, Abu-Khalaf M. A neural network solution for fixed-final time optimal control of nonlinear systems. Automatica, 2007, 43(3): 482-490
    [51] Tassa Y, Erez T. Least squares solutions of the HJB equation with neural network value-function approximators. IEEE Transactions on Neural Networks, 2007, 18(4): 1031-1041
    [52] Hanselmann T, Noakes L, Zaknich A. Continuous time adaptive critics. IEEE Transactions on Neural Networks, 2007, 18(3): 631-647
    [53] Ferrari S, Steck J E, Chandramohan R. Adaptive feedback control by constrained approximate dynamic programming. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 38(4): 982-987
    [54] Seiffertt J, Sanyal S, Wunsch D C. Hamilton-Jacobi-Bellman equations and approximate dynamic programming on time scales. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 38(4): 918-923
    [55] Vrabie D, Pastravanu O, Abu-Khalaf M, Lewis F L. Adaptive optimal control for continuous-time linear systems based on policy iteration. Automatica, 2009, 45(2): 477-484
    [56] Vrabie D, Lewis F L. Neural network approach to continuous-time direct adaptive optimal control for partially unknown nonlinear systems. Neural Networks, 2009, 22(3): 23-246
    [57] Vamvoudakis K G, Lewis F L. Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem. Automatica, 2010, 46(5): 878-888.
    [58] Zhang H G, Cui L L, Zhang X, Luo Y H. Data-driven robust approximate optimal tracking control for unknown general nonlinear systems using adaptive dynamic programming method. Transactions on Neural Networks, 2011, 22(12): 2226-2236
    [59] Bhasin S, Kamalapurkar R, Johnson M, Vamvoudakis K G, Lewis F L, Dixon, W E. A novel actor-critic-identifier architecture for approximate optimal control of uncertain nonlinear systems. Automatica, 2013, 49(1): 82-92
    [60] Mehta P, Meyn S. Q-learning and Pontryagin's minimum principle. In: Proceedings of the 48th IEEE Conference on Decision and Control. Shanghai, China: IEEE, 2009. 3598-3605
    [61] Jiang Y, Jiang Z P. Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics. Automatica, 2012, 48(10): 2699-2704
    [62] Lee J Y, Park J B, Choi Y H. Integral Q-learning and explorized policy iteration for adaptive optimal control of continuous-time linear systems. Automatica, 2012, 48(11): 2850-2859
    [63] Lee J Y, Park J B, Choi Y H. Integral reinforcement learning with explorations for continuous-time nonlinear systems. In: Proceedings of the 2012 IEEE World Congress on Computational Intelligence. Brisbane, Australia: IEEE, 2012. 1042-1047
    [64] Werbos P J. Advanced forecasting methods for global crisis warning and models of intelligence. General System Yearbook, 1977, 22: 25-38
    [65] Liu D R, Wang D, Zhao D B, Wei Q L, Jin N. Neural-network-based optimal control for a class of unknown discrete-time nonlinear systems using globalized dual heuristic programming. IEEE Transactions on Automation Science and Engineering, 2012, 9(3): 628-634
    [66] Fairbank M, Alonso E, Prokhorov D. Simple and fast calculation of the second-order gradients for globalized dual heuristic dynamic programming in neural networks. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(10): 1671-1676
    [67] Si J, Wang Y T. Online learning control by association and reinforcement. IEEE Transactions on Neural Networks, 2001, 12(2): 264-276
    [68] Padhi R, Unnikrishnan N, Wang X H, Balakrishnan S N. A single network adaptive critic architecture for optimal control synthesis for a class of nonlinear systems. Neural Networks, 2006, 19(10): 1648-1660
    [69] Ding J, Balakrishnan S N. Approximate dynamic programming solutions with a single network adaptive critic for a class of nonlinear systems. Journal of Control Theory and Applications, 2011, 9(3): 370-380
    [70] Ni Z, He H B, Wen J Y. Adaptive learning in tracking control based on the dual critic network design. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(6): 913-928
    [71] Jin N, Liu D R, Huang T, Pang Z Y. Discrete-time adaptive dynamic programming using wavelet basis function neural networks. In: Proceedings of the 2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning. Honolulu, HI: IEEE, 2007. 135-142
    [72] Deb A K, Jayadeva, Gopal M. SVM-based tree-type neural networks as a critic in adaptive critic designs for control. IEEE Transactions on Neural Networks, 2007, 18(4): 1016-1030
    [73] Eaton P H, Prokhorov D V, Wunsch D C II. Neurocontroller alternatives for fuzzy ball-and-beam systems with nonuniform nonlinear friction. IEEE Transactions on Neural Networks, 2000, 11(2): 432-435
    [74] Koprinkova-Hristova P, Oubbati M, Palm G. Adaptive critic design with echo state network. In: Proceedings of the 2010 IEEE International Conference on Systems Man and Cybernetics. Sofia, Bulgaria: IEEE, 2010. 1010-1015
    [75] Xu X, Hou Z S, Lian C Q, He H B. Online learning control using adaptive critic designs with sparse kernel machines. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(5): 762-775
    [76] Fu J, He H, Zhou X. Adaptive learning and control for MIMO system based on adaptive dynamic programming. IEEE Transactions on Neural Networks, 2011, 22(7): 1133-1148
    [77] Mohagheghi S, Venayagamoorthy G K, Harley R G. Fully evolvable optimal neurofuzzy controller using adaptive critic designs. IEEE Transactions on Fuzzy Systems, 2008, 16(6): 1450-1461
    [78] Kulkarni R V, Venayagamoorthy G K. Adaptive critics for dynamic optimization. Neural Networks, 2010, 23(5): 587-591
    [79] Kang Qi, Wang Lei, An Jing, Wu Qi-Di. Approximate dynamic programming based parameter optimization of particle swarm systems. Acta Automatica Sinica, 2010, 36(8): 1171-1181(康琦, 汪镭, 安静, 吴启迪. 基于近似动态规划的微粒群系统参数优化研究. 自动化学报, 2010, 36(8): 1171-1181)
    [80] Jiang Y, Jiang Z P. Robust adaptive dynamic programming with an application to power systems. IEEE Transactions on Neural Networks, 2013, 24(7): 1150-1156
    [81] Jiang Y, Jiang Z P. Approximate dynamic programming for optimal stationary control with control-dependent noise. IEEE Transactions on Neural Networks, 2011, 22(12): 2392-2398
    [82] Varbie D, Lewis F L. Adaptive dynamic programming algorithm for finding online the equilibrium solution of the two-player zero-sum differential game. In: Proceedings of the 2010 International Joint Conference on Neural Networks. Barcelona, Spain: IEEE, 2010. 1-8
    [83] Varbie D, Lewis F L. Adaptive dynamic programming for online solution of a zero-sum differential game. Journal of Control Theory and Applications, 2011, 9(3): 353-360
    [84] Wu H, Luo B. Simultaneous policy update algorithms for learning the solution of linear continuous-time H∞ state feedback control. Information Sciences, 2013, 222(10): 472-485
    [85] Abu-Khalaf M, Lewis F L, Huang J. Policy iterations and the Hamilton-Jacobi-Isaacs equation for H∞ state feedback control with input saturation. IEEE Transactions on Automatic Control, 2006, 51(12): 1989-1995
    [86] Abu-Khalaf M, Lewis F L, Huang J. Neurodynamic progarmming and zero-sum games for constrained control systems. IEEE Transactions on Neural Networks, 2008, 19(7): 1243-1252
    [87] Zhang H G, Wei Q L, Liu D R. An iterative adaptive dynamic programming method for solving a class of nonlinear zero-sum differential games. Automatica, 2011, 47(1): 207-214
    [88] Vamvoudakis K G, Lewis F L. Online solution of nonlinear two-player zero-sum games using synchronous policy iteration. International Journal of Robust and Nonlinear Control, 2012, 22(13): 1460-1483
    [89] Wu H N, Luo B. Neural network based online simultaneous policy update algorithm for solving the HJI equation in nonlinear H_∞ control. IEEE Transactions on Neural Networks, 2012, 23(12): 1884-1895
    [90] Johnson M, Bhasin S, Dixon W E. Nonlinear two-player zero-sum game approximate solution using a policy iteration algorithm. In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference. Orlando, USA: IEEE, 2011. 142-147
    [91] Al-Tamimi A, Abu-Khalaf M, Lewis F L. Adaptive critic designs for discrete-time zero-sum games with application to H_∞ control. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2007, 37(1): 240-247
    [92] Al-Tamimi A, Lewis F L, Abu-Khalaf M. Modelfree Q-learning designs for linear discretet-time zero-sum games with application to H_∞ control. Automatica, 2007, 43(3): 473-481
    [93] Kim J H, Lewis F L. Model-free H_∞ control design for unknown linear discrete-time systems via Q-learning with LMI. Automatica, 2010, 46(8): 1320-1326
    [94] Mehraeen S, Dierks T, Jagannathan S, Crow M L. Zero-sum two-player game theoretic formulation of affine nonlinear discrete-time systems using neural networks. In: Proceedings of the 2010 International Joint Conference on Neural Networks. Barcelona, Spain: IEEE, 2010. 1-8
    [95] Liu D R, Li H L, Wang D. H_∞ control of unknown discretetime nonlinear systems with control constraints using adaptive dynamic programming. In: Proceedings of the 2012 International Joint Conference on Neural Networks. Brisbane, Australia: IEEE, 2012. 3056-3061
    [96] Vrabie D, Lewis F L. Integral reinforcement learning for online computation of feedback Nash strategies of nonzero-sum differential games. In: Proceedings of the 49th IEEE Conference on Decision and Control. Atlanta, GA: IEEE, 2010. 3066-3071
    [97] Vamvoudakis K G, Lewis F L. Multi-player non-zero sum games: online adaptive learning solution of coupled Hamilton-Jacobi equations. Automatica, 2011, 47(8): 1556-1569
    [98] Vamvoudakis K G, Lewis F L, Hudas G R. Multi-agent differential graphical games: online adaptive learning solution for synchronization with optimality. Automatica, 2012, 48(8): 1598-1611
    [99] Zhang H G, Cui L L, Luo Y H. Near-optimal control for nonzero-sum differential games of continuous-time nonlinear systems using single-network ADP. IEEE Transactions on Cybernetics, 2013, 43(1): 206-216
    [100] Vamvoudakis K G, Lewis F L, Johnson M, Dixon W E. Online learning algorithm for Stackelberg games in problems with hierarchy. In: Proceedings of the 51st IEEE Conference on Decision and Control. Maui, Hawaii, USA: IEEE, 2012. 1883-1889
    [101] Mehraeen S, Jagannathan S. Decentralized optimal control of a class of interconnected nonlinear discrete-Time systems by using online Hamilton-Jacobi-Bellman formulation. IEEE Transactions on Neural Networks, 2011, 22(11): 1757-1769
    [102] Jiang Y, Jiang Z P. Robust adaptive dynamic programming for large-scale systems with an application to multimachine power systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 2012, 59(10): 693-697
    [103] Xu H, Jagannathan S, Lewis F L. Stochastic optimal control of unknown linear networked control system in the presence of random delays and packet losses. Automatica, 2012, 48(6): 1017-1030
    [104] Xu H, Jagannathan S. Stochastic optimal controller design for uncertain nonlinear networked control system via neuro dynamic programming. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(5): 471-484
    [105] Bertsekas D P. Dynamic programming and suboptimal control: a survey from ADP to MPC. European Journal of Control, 2005, 11(4-5): 310-334
    [106] Cox C J, Stepniewski S W, Jorgensen C C, Saeks R. On the design of a neural network autolander. International Journal of Robust and Nonlinear Control, 1999, 9: 1071-1096
    [107] Enns R, Si J. Helicopter trimming and tracking control using direct neural dynamic programming. IEEE Transactions on Neural Networks, 2003, 14(4): 929-939
    [108] Nodland D, Zargarzadeh H, Jagannathan S. Neural-network-based optimal adaptive output feedback control of a helicopter UAV. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(7): 1061-1073
    [109] Lin C. Adaptive critic autopilot design of bank-to-turn missiles using fuzzy basis function networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 35(2): 929-939
    [110] Han D, Balakrishnan S N. State-constrained agile missile control with adaptive-critic-based neural networks. IEEE Transactions on Control Systems Technology, 2002, 10(4): 481-489
    [111] Lin W S, Chang L H, Yang P C. Adaptive critic anti-slip control of wheeled autonomous robot. Automatica, 2008, 44(11): 2716-2723
    [112] Liu D R, Javaherian H, Kovalenko O, Huang T. Adaptive critic learning techniques for engine torque and air-fuel ratio control. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 38(4): 988-993
    [113] Shih P, Kaul B C, Jagannathan S, Drallmeier J A. Reinforcement-learning-based output-feedback control of nonstrict nonlinear discrete-time systems with application to engine emission control. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2009, 39(5): 1162-1179
    [114] Peter S, Brian C K, Jagannathan S, Drallmeier J A. Reinforcement-learning-based dual-control methodology for complex nonlinear discrete-time systems with application to spark engine EGR operation. IEEE Transactions on Neural Networks, 2008, 19(8): 1369-1388
    [115] Park J W, Harley R G, Venayagamoorthy G K. Adaptive critic-based optimal neurocontrol for synchronous generators in a power system using MLP/RBF neural networks. IEEE Transactions on Industry Applications, 2003, 39(5): 1529-1540
    [116] Liu W X, Venayagamoorthy G K, Wunsch D C. A heuristic-dynamic-programming-based power system stabilizer for a turbogenerator in a single-machine power system. IEEE Transactions on Industry Applications, 2005, 41(5): 1377-385
    [117] Mohagheghi S, Venayagamoorthy G K, Harley R G. Adaptive critic design based neuro-fuzzy controller for a static compensator in a multimachine power system. IEEE Transactions on Power Systems, 2006, 21(4): 1744-1754
    [118] Mohagheghi S, Valle Y, Venayagamoorthy G K, Harley R G. A proportional-integrator type adaptive critic design-based neurocontroller for a static compensator in a multimachine power system. IEEE Transactions on Industry Applications Electronics, 2007, 54(1): 86-96
    [119] Ray S, Venayagamoorthy G K, Chaudhuri B, Majumder R. Comparison of adaptive critics and classical approaches based wide area controllers for a power system. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 38(4): 1002-1007
    [120] Qiao W, Harley R G, Venayagamoorthy G K. Coordinated reactive power control of a large wind farm and a STATCOM using heuristic dynamic programming. IEEE Transactions on Energy Conversion, 2009, 24(2): 493-503
    [121] Liang J Q, Venayagamoorthy G K, Harley R G. Wide-area measurement based dynamic stochastic optimal power flow control for smart grids with high variability and uncertainty. IEEE Transactions on Smart Grid, 2012, 3(1): 59-69
    [122] Lu C, Si J N, Xie X R. Direct heuristic dynamic programming for damping oscillations in a large power system. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 38(4): 1008-1013
    [123] Huang T, Liu D E. A self-learning scheme for residential energy system control and management. Neural Computing and Applications, 2013, 2(2): 259-269
    [124] Zhao Dong-Bin, Liu De-Rong, Yi Jian-Qiang. An overview on the adaptive dynamic programming based urban city traffic signal optimal control. Acta Automatica Sinica, 2009, 35(6): 676-681(赵冬斌, 刘德荣, 易建强. 基于自适应动态规划的城市交通信号优化控制方法综述. 自动化学报, 2009, 35(6): 676-681)
    [125] Lin W S, Sheu J W. Metro traffic regulation by adaptive optimal control. EEE Transactions on Intelligent Transportation System, 2011, 12(4): 1064-1073
    [126] Lin W S, Sheu J W. Optimization of train regulation and energy usage of metro lines using an adaptive-optimal-control algorithm. IEEE Transactions on Automation Science and Engineering, 2011, 8(4): 855-864
    [127] Sheu J W, Lin W S. Adaptive optimal control for designing automatic train regulation for metro line. IEEE Transactions on Control Systems Technology, 2012, 20(5): 1319-1327
    [128] Sheu J W, Lin W S. Energy-saving automatic train regulation using dual heuristic programming. IEEE Transactions on Vehicular Technology, 2012, 61(4): 1503-1514
    [129] Zhao D B, Bai X R, Wang F Y, Xu J, Yu W. DHP method for ramp metering of freeway traffic. EEE Transactions on Intelligent Transportation System, 2011, 12(4): 990-999
    [130] Cai C, Wong C K, Heydecker B G. Adaptive traffic signal control using approximate dynamic programming. Transportation Research Part C, 2009, 17(5): 456-474
    [131] Shervais S, Shannon T T, Lendaris G G. Intelligent supply chain management using adaptive critic learning. IEEE Transactions on Systems, Man, and Cybernetics, Part A, 2003, 33(2): 235-244
    [132] Sun Z, Chen X, He Z Z. Adaptive critic design for energy minimization of portable video communication devices. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(1): 37-37
    [133] Iftekharuddin K M. Transformation invariant on-line target recognition. IEEE Transactions on Neural Networks, 2011, 22(6): 906-918
    [134] Venayagamoorthy G K, Zha W. Comparison of nonuniform optimal quantizer designs for speech coding with adaptive critics and particle swarm. IEEE Transactions on Industry Applications, 2007, 43(1): 238-244
    [135] Lee J M, Lee J H. Approximate dynamic programming-based approaches for input-output data-driven control of nonlinear processes. Automatica, 2005, 41(7): 1281-1288
    [136] Lee J M, Lee J H. An approximate dynamic programming based approach to dual adaptive control. Journal of Process Control, 2009, 19(1): 85-864
    [137] Lee J M, Kaisare N S, Lee J H. Choice of approximator and design of penalty function for an approximate dynamic programming based control approach. Journal of Process Control, 2006, 16(2): 135-156
    [138] Lee J M, Lee J H. Value function-based approach to the scheduling of multiple controllers. Journal of Process Control, 2008, 18(6): 533-542
    [139] Govindhasamy J J, McLoone S F, Irwin G W. Second-order training of adaptive critics for online process control. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2005, 35(2): 381-385
    [140] Iyer M S, Wunsch D C. Dynamic re-optimization of a fed-batch fermentor using adaptive critic designs. IEEE Transactions on Neural Networks, 2001, 12(6): 1433-1444
    [141] Marbach P, Mihatsch O, Tsitsiklis J N. Call admission control and routing in integrated services networks using neuro-dynamic programming. IEEE Journal on Selected Areas in Communications, 2000, 18(2): 197-208
    [142] Liu D, Zhang Y, Zhang H. A self-learning call admission control scheme for CDMA cellular networks. IEEE Transactions on Neural Networks, 2005, 16(5): 1219-1228
    [143] Williams J L, Fisher J W, Willsky A S. Approximate dynamic programming for communication-constrained sensor network management. IEEE Transactions on Signal Processing, 2007, 55(8): 3995-4003
  • 加载中
计量
  • 文章访问数:  3327
  • HTML全文浏览量:  151
  • PDF下载量:  3867
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-28
  • 修回日期:  2013-09-02
  • 刊出日期:  2013-11-20

目录

    /

    返回文章
    返回