2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向蛇形机器人的三维步态控制的层次化联结中枢模式生成器模型

杨贵志 马书根 李斌 王明辉

杨贵志, 马书根, 李斌, 王明辉. 面向蛇形机器人的三维步态控制的层次化联结中枢模式生成器模型. 自动化学报, 2013, 39(10): 1611-1622. doi: 10.3724/SP.J.1004.2013.01611
引用本文: 杨贵志, 马书根, 李斌, 王明辉. 面向蛇形机器人的三维步态控制的层次化联结中枢模式生成器模型. 自动化学报, 2013, 39(10): 1611-1622. doi: 10.3724/SP.J.1004.2013.01611
YANG Gui-Zhi, MA Shu-Gen, LI Bin, WANG Ming-Hui. A Hierarchical Connectionist Central Pattern Generator Model for Controlling Three-dimensional Gaits of Snake-like Robots. ACTA AUTOMATICA SINICA, 2013, 39(10): 1611-1622. doi: 10.3724/SP.J.1004.2013.01611
Citation: YANG Gui-Zhi, MA Shu-Gen, LI Bin, WANG Ming-Hui. A Hierarchical Connectionist Central Pattern Generator Model for Controlling Three-dimensional Gaits of Snake-like Robots. ACTA AUTOMATICA SINICA, 2013, 39(10): 1611-1622. doi: 10.3724/SP.J.1004.2013.01611

面向蛇形机器人的三维步态控制的层次化联结中枢模式生成器模型

doi: 10.3724/SP.J.1004.2013.01611
基金项目: 

国家自然科学基金(61075103)资助

详细信息
    作者简介:

    杨贵志 中国科学院沈阳自动化研究所博士研究生.主要研究方向为蛇形机器人,智能控制.E-mail:yangguizhi@sia.cn

A Hierarchical Connectionist Central Pattern Generator Model for Controlling Three-dimensional Gaits of Snake-like Robots

Funds: 

Supported by National Natural Science Foundation of China (61075103)

  • 摘要: 提高蛇形机器人的三维运动控制能力是提高蛇形机器人环境适应能力的关键之一. 虽然联结中枢模式生成器(Connectionist central pattern generator, CCPG)模型具有复杂度小、适合硬件实现等优点, 但是目前的CCPG模型难以生成相位协调的多自由度运动的控制信号,从而限制了它的三维步态控制能力. 本文根据生物CPG机制的分层结构和运动神经元的功能,提出一个有层次化结构的CCPG (Hierarchical CCPG, HCCPG)模型. HCCPG模型由基本节律信号生成层、模式形成层、运动信号调整层这三个部分组成. 运动信号调整层的运动神经元能够独立地对模式形成层的输出信号的幅值、相位等进行调整,从而较好地 解决了CCPG模型难以生成相位协调的多自由度运动控制信号的问题. HCCPG模型具有步态控制能力强、复杂度小、有良好的扩展性等优点,从而适合用于控制三维步态. 在HCCPG模型的基础上提出一个三维步态控制方法.仿真验证了这个控制方法的有效性.
  • [1] Gans C, Kim H L. Kinematic description of the sidewinding locomotion of four vipers. Israel Journal of Zoology, 1992, 38(1): 9-23
    [2] Summers A P, O'Reilly J C. A comparative study of locomotion in the caecilians Dermophis mexicanus and Typhlonectes natans (Amphibia: Gymnophiona). Zoological Journal of the Linnean Society, 1997, 121(1): 65-76
    [3] Maity A, Majumder S. Implementation of serpentine locomotion. International Journal of Intelligent Systems Technologies and Applications, 2012, 11(1-2): 81-101
    [4] Hooper S L. Central pattern generators. Current Biology, 2000, 10(5): R176-R177
    [5] Hirose S, Yamada H. Snake-like robots: machine design of biologically inspired robots. IEEE Robotics and Automation Magazine, 2009, 16(1): 88-98
    [6] Ijspeert A J. Central pattern generators for locomotion control in animals and robots: a review. Neural Networks, 2008, 21(4): 642-653
    [7] Heliot R, Espiau B. Multisensor input for CPG-based sensory-motor coordination. IEEE Transactions on Robotics, 2008, 24(1): 191-195
    [8] Buchli J, Righetti L, Ijspeert A J. Engineering entrainment and adaptation in limit cycle systems—from biological inspiration to applications in robotics. Biological Cybernetics, 2006, 95(6): 645-664
    [9] Wang D L. Relaxation oscillators and networks. Wiley Encyclopedia of Electrical and Electronics Engineering. New Jersey: Wiley & Sons, 1999, 18: 396-405
    [10] Yu J, Ding R, Yang Q, Tan M, Wang M, Zhang J. On a bio-inspired amphibious robot capable of multimodal motion. IEEE/ASME Transactions on Mechatronics, 2012, 17(5): 847-856
    [11] Rybak I A, Ivashko D G, Prilutsky B I, Lewis M A, Chapin J K. Modeling neural control of locomotion: integration of reflex circuits with CPG. In: Proceedings of the 2002 International Conference on Artificial Neural Networks. Berlin Heidelberg: Springer-Verlag, 2002. 99-104
    [12] Sfakiotakis M, Tsakiris D P. Neuromuscular control of reactive behaviors for undulatory robots. Neurocomputing, 2007, 70(10-12): 1907-1913
    [13] Scharstein H. Input-output relationship of the leaky-integrator neuron model. Journal of Mathematical Biology, 1979, 24(1): 403-420
    [14] Matsuoka K. Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biological Cybernetics, 1985, 52(6): 367-376
    [15] Yang Z J, Cameron K, Lewinger W, Webb B, Murray A. Neuromorphic control of stepping pattern generation: a dynamic model with analog circuit implementation. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(3): 373-384
    [16] Okazaki K, Ogiwara T, Yang D S, Sakata K, Saito K, Sekine Y, Uchikoba F. Development of a pulse control-type MEMS microrobot with a hardware neural network. Artificial Life and Robotics, 2011, 16(2): 229-233
    [17] Vogelstein R J, Tenore F V G, Guevremont L, Etienne-Cummings R, Mushahwar V K. A silicon central pattern generator controls locomotion in vivo. IEEE Transactions on Biomedical Circuits and Systems, 2008, 2(3): 212-222
    [18] Maeda Y. A hardware neuronal network model of a two-level central pattern generator. Transactions of the Japanese Society for Medical and Biological Engineering, 2008, 46(5): 496-504
    [19] Nakada K, Asai T, Amemiya Y. An analog CMOS central pattern generator for interlimb coordination in quadruped locomotion. IEEE Transactions on Neural Networks, 2003, 14(5): 1356-1365
    [20] Caama\ {no P, Becerra J A, Bellas F, Duro R J. Using spiking neural networks for the generation of coordinated action sequences in robots. In: Proceedings of the 15th International Conference on Neuro-Information Processing. Berlin Heidelberg: Springer, 2009. 1013-1020
    [21] Herrero-Carrón F, Rodríguez F B, Varona P. Bio-inspired design strategies for central pattern generator control in modular robotics. Bioinspiration and Biomimetics, 2011, 6(1): 1-16
    [22] Matsuo T, Yokoyama T, Ueno D, Ishii K. Biomimetic motion control system based on a CPG for an amphibious multi-Link mobile robot. Journal of Bionic Engineering, 2008, 5: 91-97
    [23] Lu Zhen-Li, Ma Shu-Gen, Li Bin, Wang Yue-Chao. 3-dimensional locomotion of a snake-like robot controlled by cyclic inhibitory CPG model. Acta Automatica Sinica, 2006, 33(1): 54-58 (卢振利, 马书根, 李斌, 王越超. 基于循环抑制CPG模型控制的蛇形机器人三维运动. 自动化学报, 2006, 33(1): 54-58)
    [24] Buchli J, Ijspeert A J. Distributed central pattern generator model for robotics application based on phase sensitivity analysis. In: Proceedings of the 1st International Workshop on Biologically Inspired Approaches to Advanced Information Technology. Berlin Heidelberg: Springer, 2004. 333-349
    [25] Huang W W, Chew C M, Hong G S. Coordination between oscillators: an important feature for robust bipedal walking. In: Proceedings of the 2008 IEEE International Conference on Robotics and Automation. Pasadena, CA: IEEE, 2008. 3206-3212
    [26] McCrea D A, Rybak I A. Organization of mammalian locomotor rhythm and pattern generation. Brain Research Reviews, 2008, 57(1): 134-146
    [27] Wang T T, Guo W, Li M T, Zha F S, Sun L N. CPG control for biped hopping robot in unpredictable environment. Journal of Bionic Engineering, 2012, 9(1): 29-38
    [28] Gallagher J C, Beer R D, Espenschied K S, Quinn R D. Application of evolved locomotion controllers to a hexapod robot. Robotics and Autonomous Systems, 1996, 19(1): 95-103
    [29] Noble F K, Potgieter J, Xu W L. Modelling and simulations of a central pattern generator controlled, antagonistically actuated limb joint. In: Proceedings of the 2011 IEEE International Conference on Systems, Man, and Cybernetics. Anchorage, AK: IEEE, 2011. 2898-2903
    [30] Kiehn O, Kjaerulff O, Tresch M C, Harris-Warrick R M. Contributions of intrinsic motor neuron properties to the production of rhythmic motor output in the mammalian spinal cord. Brain Research Bulletin, 2000, 53(5): 649-659
    [31] Lu Z L, Ma S G, Li B, Wang Y C. 3D locomotion of a snake-like robot controlled by cyclic inhibitory CPG model. In: Proceedings of the 2006 IEEE International Conference on Intelligent Robots and Systems. Beijing, China: IEEE, 2006. 3897-3902
    [32] Nassour J, Henaff P, Ben Ouezdou F, Cheng G. A study of adaptive locomotive behaviors of a biped robot: patterns generation and classification. In: Proceedings of the 11th International Conference on Simulation of Adaptive Behavior: From Animals to Animats. Berlin Heidelberg: Springer, 2010. 313-324
    [33] Wu X D, Ma S G. Adaptive creeping locomotion of a CPG-controlled snake-like robot to environment change. Autonomous Robots, 2010, 28(3): 283-294
    [34] Shammas E, Wolf A, Choset H. Three degrees-of-freedom joint for spatial hyper-redundant robots. Mechanism and Machine Theory, 2006, 41(2): 170-190
    [35] Chen L, Ma S G, Wang Y C, Li B, Duan D P. Design and modelling of a snake robot in traveling wave locomotion. Mechanism and Machine Theory, 2007, 42(12): 1632-1642
    [36] Ohno H, Hirose S. Design of slim slime robot and its gait of locomotion. In: Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Maui, HI: IEEE, 2001. 707-715
    [37] Hatton R L, Choset H. Generating gaits for snake robots: annealed chain fitting and keyframe wave extraction. Autonomous Robots, 2010, 28(3): 271-281
  • 加载中
计量
  • 文章访问数:  1598
  • HTML全文浏览量:  42
  • PDF下载量:  938
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-29
  • 修回日期:  2012-11-30
  • 刊出日期:  2013-10-20

目录

    /

    返回文章
    返回