[1]
|
Gans C, Kim H L. Kinematic description of the sidewinding locomotion of four vipers. Israel Journal of Zoology, 1992, 38(1): 9-23
|
[2]
|
Summers A P, O'Reilly J C. A comparative study of locomotion in the caecilians Dermophis mexicanus and Typhlonectes natans (Amphibia: Gymnophiona). Zoological Journal of the Linnean Society, 1997, 121(1): 65-76
|
[3]
|
Maity A, Majumder S. Implementation of serpentine locomotion. International Journal of Intelligent Systems Technologies and Applications, 2012, 11(1-2): 81-101
|
[4]
|
Hooper S L. Central pattern generators. Current Biology, 2000, 10(5): R176-R177
|
[5]
|
Hirose S, Yamada H. Snake-like robots: machine design of biologically inspired robots. IEEE Robotics and Automation Magazine, 2009, 16(1): 88-98
|
[6]
|
Ijspeert A J. Central pattern generators for locomotion control in animals and robots: a review. Neural Networks, 2008, 21(4): 642-653
|
[7]
|
Heliot R, Espiau B. Multisensor input for CPG-based sensory-motor coordination. IEEE Transactions on Robotics, 2008, 24(1): 191-195
|
[8]
|
Buchli J, Righetti L, Ijspeert A J. Engineering entrainment and adaptation in limit cycle systems—from biological inspiration to applications in robotics. Biological Cybernetics, 2006, 95(6): 645-664
|
[9]
|
Wang D L. Relaxation oscillators and networks. Wiley Encyclopedia of Electrical and Electronics Engineering. New Jersey: Wiley & Sons, 1999, 18: 396-405
|
[10]
|
Yu J, Ding R, Yang Q, Tan M, Wang M, Zhang J. On a bio-inspired amphibious robot capable of multimodal motion. IEEE/ASME Transactions on Mechatronics, 2012, 17(5): 847-856
|
[11]
|
Rybak I A, Ivashko D G, Prilutsky B I, Lewis M A, Chapin J K. Modeling neural control of locomotion: integration of reflex circuits with CPG. In: Proceedings of the 2002 International Conference on Artificial Neural Networks. Berlin Heidelberg: Springer-Verlag, 2002. 99-104
|
[12]
|
Sfakiotakis M, Tsakiris D P. Neuromuscular control of reactive behaviors for undulatory robots. Neurocomputing, 2007, 70(10-12): 1907-1913
|
[13]
|
Scharstein H. Input-output relationship of the leaky-integrator neuron model. Journal of Mathematical Biology, 1979, 24(1): 403-420
|
[14]
|
Matsuoka K. Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biological Cybernetics, 1985, 52(6): 367-376
|
[15]
|
Yang Z J, Cameron K, Lewinger W, Webb B, Murray A. Neuromorphic control of stepping pattern generation: a dynamic model with analog circuit implementation. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(3): 373-384
|
[16]
|
Okazaki K, Ogiwara T, Yang D S, Sakata K, Saito K, Sekine Y, Uchikoba F. Development of a pulse control-type MEMS microrobot with a hardware neural network. Artificial Life and Robotics, 2011, 16(2): 229-233
|
[17]
|
Vogelstein R J, Tenore F V G, Guevremont L, Etienne-Cummings R, Mushahwar V K. A silicon central pattern generator controls locomotion in vivo. IEEE Transactions on Biomedical Circuits and Systems, 2008, 2(3): 212-222
|
[18]
|
Maeda Y. A hardware neuronal network model of a two-level central pattern generator. Transactions of the Japanese Society for Medical and Biological Engineering, 2008, 46(5): 496-504
|
[19]
|
Nakada K, Asai T, Amemiya Y. An analog CMOS central pattern generator for interlimb coordination in quadruped locomotion. IEEE Transactions on Neural Networks, 2003, 14(5): 1356-1365
|
[20]
|
Caama\ {no P, Becerra J A, Bellas F, Duro R J. Using spiking neural networks for the generation of coordinated action sequences in robots. In: Proceedings of the 15th International Conference on Neuro-Information Processing. Berlin Heidelberg: Springer, 2009. 1013-1020
|
[21]
|
Herrero-Carrón F, Rodríguez F B, Varona P. Bio-inspired design strategies for central pattern generator control in modular robotics. Bioinspiration and Biomimetics, 2011, 6(1): 1-16
|
[22]
|
Matsuo T, Yokoyama T, Ueno D, Ishii K. Biomimetic motion control system based on a CPG for an amphibious multi-Link mobile robot. Journal of Bionic Engineering, 2008, 5: 91-97
|
[23]
|
Lu Zhen-Li, Ma Shu-Gen, Li Bin, Wang Yue-Chao. 3-dimensional locomotion of a snake-like robot controlled by cyclic inhibitory CPG model. Acta Automatica Sinica, 2006, 33(1): 54-58 (卢振利, 马书根, 李斌, 王越超. 基于循环抑制CPG模型控制的蛇形机器人三维运动. 自动化学报, 2006, 33(1): 54-58)
|
[24]
|
Buchli J, Ijspeert A J. Distributed central pattern generator model for robotics application based on phase sensitivity analysis. In: Proceedings of the 1st International Workshop on Biologically Inspired Approaches to Advanced Information Technology. Berlin Heidelberg: Springer, 2004. 333-349
|
[25]
|
Huang W W, Chew C M, Hong G S. Coordination between oscillators: an important feature for robust bipedal walking. In: Proceedings of the 2008 IEEE International Conference on Robotics and Automation. Pasadena, CA: IEEE, 2008. 3206-3212
|
[26]
|
McCrea D A, Rybak I A. Organization of mammalian locomotor rhythm and pattern generation. Brain Research Reviews, 2008, 57(1): 134-146
|
[27]
|
Wang T T, Guo W, Li M T, Zha F S, Sun L N. CPG control for biped hopping robot in unpredictable environment. Journal of Bionic Engineering, 2012, 9(1): 29-38
|
[28]
|
Gallagher J C, Beer R D, Espenschied K S, Quinn R D. Application of evolved locomotion controllers to a hexapod robot. Robotics and Autonomous Systems, 1996, 19(1): 95-103
|
[29]
|
Noble F K, Potgieter J, Xu W L. Modelling and simulations of a central pattern generator controlled, antagonistically actuated limb joint. In: Proceedings of the 2011 IEEE International Conference on Systems, Man, and Cybernetics. Anchorage, AK: IEEE, 2011. 2898-2903
|
[30]
|
Kiehn O, Kjaerulff O, Tresch M C, Harris-Warrick R M. Contributions of intrinsic motor neuron properties to the production of rhythmic motor output in the mammalian spinal cord. Brain Research Bulletin, 2000, 53(5): 649-659
|
[31]
|
Lu Z L, Ma S G, Li B, Wang Y C. 3D locomotion of a snake-like robot controlled by cyclic inhibitory CPG model. In: Proceedings of the 2006 IEEE International Conference on Intelligent Robots and Systems. Beijing, China: IEEE, 2006. 3897-3902
|
[32]
|
Nassour J, Henaff P, Ben Ouezdou F, Cheng G. A study of adaptive locomotive behaviors of a biped robot: patterns generation and classification. In: Proceedings of the 11th International Conference on Simulation of Adaptive Behavior: From Animals to Animats. Berlin Heidelberg: Springer, 2010. 313-324
|
[33]
|
Wu X D, Ma S G. Adaptive creeping locomotion of a CPG-controlled snake-like robot to environment change. Autonomous Robots, 2010, 28(3): 283-294
|
[34]
|
Shammas E, Wolf A, Choset H. Three degrees-of-freedom joint for spatial hyper-redundant robots. Mechanism and Machine Theory, 2006, 41(2): 170-190
|
[35]
|
Chen L, Ma S G, Wang Y C, Li B, Duan D P. Design and modelling of a snake robot in traveling wave locomotion. Mechanism and Machine Theory, 2007, 42(12): 1632-1642
|
[36]
|
Ohno H, Hirose S. Design of slim slime robot and its gait of locomotion. In: Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Maui, HI: IEEE, 2001. 707-715
|
[37]
|
Hatton R L, Choset H. Generating gaits for snake robots: annealed chain fitting and keyframe wave extraction. Autonomous Robots, 2010, 28(3): 271-281
|