2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变维度状态空间的增量启发式路径规划方法研究

张浩杰 龚建伟 姜岩 熊光明 陈慧岩

张浩杰, 龚建伟, 姜岩, 熊光明, 陈慧岩. 基于变维度状态空间的增量启发式路径规划方法研究. 自动化学报, 2013, 39(10): 1602-1610. doi: 10.3724/SP.J.1004.2013.01602
引用本文: 张浩杰, 龚建伟, 姜岩, 熊光明, 陈慧岩. 基于变维度状态空间的增量启发式路径规划方法研究. 自动化学报, 2013, 39(10): 1602-1610. doi: 10.3724/SP.J.1004.2013.01602
ZHANG Hao-Jie, GONG Jian-Wei, JIANG Yan, XIONG Guang-Ming, CHEN Hui-Yan. Research on Incremental Heuristic Path Planner with Variable Dimensional State Space. ACTA AUTOMATICA SINICA, 2013, 39(10): 1602-1610. doi: 10.3724/SP.J.1004.2013.01602
Citation: ZHANG Hao-Jie, GONG Jian-Wei, JIANG Yan, XIONG Guang-Ming, CHEN Hui-Yan. Research on Incremental Heuristic Path Planner with Variable Dimensional State Space. ACTA AUTOMATICA SINICA, 2013, 39(10): 1602-1610. doi: 10.3724/SP.J.1004.2013.01602

基于变维度状态空间的增量启发式路径规划方法研究

doi: 10.3724/SP.J.1004.2013.01602
基金项目: 

国家自然科学基金(51275041, 90920304)资助

详细信息
    作者简介:

    张浩杰 北京理工大学智能车辆研究所博士研究生.2008年获得中南大学交通设备信息工程系学士学位.主要研究方向为自主平台的路径规划技术.E-mail:haojie.bit@gmail.com

Research on Incremental Heuristic Path Planner with Variable Dimensional State Space

Funds: 

Supported by National Natural Science Foundation of China (51275041, 90920304)

  • 摘要: 在移动机器人路径规划中需要考虑运动几何约束,同时,由于它经常工作于动态、时变的环 境中,因此,还必须保证路径规划算法的效率.本文提出了一种基于变维度状态空间的增量启发式路径规划 方法,该方法既能满足移动机器人的运动几何约束,又能保证规划算法的效率.首先,设计了变维度状态空间, 在机器人周围的局部区域考虑运动几何约束组织高维状态空间,其他区域组织低维状态空间;然后,基于变维 度状态空间,提出了一种增量启发式路径规划方法,该方法在新的规划进程中可以使用以前的规划结果,仅对 机器人周围的局部区域进行重搜索,从而能保证算法的增量性及实时性;最后,通过仿真计算和机器人实验验 证了算法的有效性.
  • [1] Likhachev M, Gorden G J, Thrun S. ARA*: anytime A* with provable bounds on sub-optimality. In: Proceedings of the 17th Annual Conference on Neural Information Proceeding Systems. New York, USA: IEEE, 2003
    [2] Bekris K E, Kavraki L E. Greedy but safe replanning under kinodynamic constraints. In: Proceedings of the 2007 IEEE International Conference on Robotics and Automation. New York, USA: IEEE, 2007. 704-710
    [3] Petti S, Fraichard T. Safe motion planning in dynamic environments. In: Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. New York, USA: IEEE, 2005. 2210-2215
    [4] Likhachev M, Ferguson D. Planning long dynamically feasible maneuvers for autonomous vehicles. International Journal of Robotics Research, 2009, 28(8): 933-945
    [5] Brock O, Khatib O. High-speed navigation using the global dynamic window approach. In: Proceedings of the 1999 IEEE International Conference on Robotics and Automation. New York, USA: IEEE, 1999. 341-346
    [6] Kelly A J. An Intelligent, Predictive Control Approach to the High-speed Cross-country Autonomous Navigation Problem, Technical Report, CMU-RI-TR-95-33, Robotics Institute, Carnegie Mellon University, 1995
    [7] Philippsen R, Siegwart R. Smooth and efficient obstacle avoidance for a tour guide robot. In: Proceedings of the 2003 IEEE International Conference on Robotics and Automation. New York, USA: IEEE, 2003. 446-451
    [8] Mills-Tettey G A, Stentz A, Bernardine Dias M. DD* lite: efficient incremental search with state dominance. In: Proceedings of the 21st National Conference on Artificial Intelligence. Palo Alto, USA: AAAI, 2006. 1032-1038
    [9] Zhang H J, Chen H Y, Jiang Y, Gong J W, Xiong G M. Variable dimensional state space based global path planning for mobile robot. Journal of Beijing Institute of Technology, 2012, 21(3): 328-335
    [10] Zhang H J, Butzke J, Likhachev M. Combining global and local planning with guarantees on completeness. In: Proceedings of the 2012 IEEE International Conference on Robotics and Automation. New York, USA: IEEE, 2012. 4500-4506
    [11] Howard T M, Kelly A. Optimal rough terrain trajectory generation for wheeled mobile robots. International Journal of Robotics Research, 2007, 26(2): 141-166
    [12] Pitvoraiko M, Knepper R A, Kelly A. Differentially constrained mobile robot motion planning in state lattices. Journal of Field Robotics, 2009, 26(3): 308-333
    [13] Likhachev M, Ferguson D I, Gordon G J, Stentz A, Thrun S. Anytime dynamic A*: an anytime, replanning algorithm. In: Proceedings of the 2005 International Conference on Automated Planning and Scheduling. California, USA: IEEE, 2005. 262-271
  • 加载中
计量
  • 文章访问数:  1954
  • HTML全文浏览量:  100
  • PDF下载量:  2117
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-27
  • 修回日期:  2012-11-30
  • 刊出日期:  2013-10-20

目录

    /

    返回文章
    返回