[1]
|
Zhou K M, Doyle J C. Essentials of Robust Control. Upper Saddle River: Prentice-Hall, 1998
|
[2]
|
Gahinet P, Apkarian P. A linear matrix inequality approach to H∞ control. International Journal of Robust and Nonlinear Control, 1994, 4(4): 421-448
|
[3]
|
Skelton R E, Iwasaki T, Grigoriadis D E. A Unified Algebraic Approach to Linear Control Design. New York: Taylor and Francis, 1997
|
[4]
|
Xin X, Guo L, Feng C B. Reduced-order controllers for continuous and discrete-time singular H∞ control problems based on LMI. Automatica, 1996, 32(11): 1581-1585
|
[5]
|
Zeng Jian-Ping, Cheng Peng. Design reduced-order controllers for a class of control problems. Acta Automatica Sinica, 2002, 28(2): 267-271(曾建平, 程鹏. 一类控制问题的降阶控制器设计. 自动化学报, 2002, 28(2): 267-271)
|
[6]
|
Watanabe T, Stoorvogel A A. Plant zero structure and further order reduction of a singular H∞ controller. International Journal of Robust and Nonlinear Control, 2002, 12(7): 591-619
|
[7]
|
Xin X. Reduced-order controllers for the H∞ control problem with unstable invariant zeros. Automatica, 2004, 40(2): 319-326
|
[8]
|
Zhong Rui-Lin, Cheng Peng. Constructing a reduced-order H-infinity controller using stable invariant zeros. Control Theory & Applications, 2007, 24(5): 707-710(钟瑞麟, 程鹏. 利用稳定零点构造降阶H∞控制器的方法. 控制理论与应用, 2007, 24(5): 707-710)
|
[9]
|
Byrnes C I, Georgiou T T, Lindquist A. Analytic interpolation with degree constraint: a constructive theory with applications to control and signal processing. In: Proceedings of the 38th IEEE Conference on Decision and Control. Phoenix, USA: IEEE, 1999. 982-988
|
[10]
|
Byrnes C I, Georgiou T T, Lindquist A. A generalized entropy criterion for Nevanlinna-Pick interpolation with degree constraint. IEEE Transactions on Automatic Control, 2001, 46(6): 822-839
|
[11]
|
Byrnes C I, Georgiou T T, Lindquist A, Megretski A. Generalized interpolation in H∞ with a complexity constraint. Transactions of American Mathematical Society, 2006, 358(3): 965-987
|
[12]
|
Georgiou T T. Realization of power spectra from partial covariance sequences. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987, 35(4): 438-449
|
[13]
|
Georgiou T T. A topological approach to Nevanlinna-Pick interpolation. SIAM Journal on Mathematical Analysis, 1987, 18(5): 1248-1260
|
[14]
|
Byrnes C I, Lindquist A, Gusev S V, Matveev A S. A complete parameterization of all positive rational extensions of a covariance sequence. IEEE Transactions on Automatic Control, 1995, 40(11): 1841-1857
|
[15]
|
Byrnes C I, Gusev S V, Lindquist A. A convex optimization approach to the rational covariance extension problem. SIAM Journal on Control and Optimization, 1998, 37(1): 211-229
|
[16]
|
Georgiou T T, Lindquist A. Kullback-Leibler approximation of spectral density functions. IEEE Transactions on Information Theory, 2003, 49(11): 2910-2917
|
[17]
|
Enqvist P. A homotopy approach to rational covariance extension with degree constraint. International Journal of Applied Mathematics Computer Science, 2001, 11(5): 1173-1201
|
[18]
|
Nagamune R. A robust solver using a continuation method for Nevanlinna-Pick interpolation with degree constraint. IEEE Transactions on Automatic Control, 2003, 48(1): 113-117
|
[19]
|
Liu C S, Atluri S N. A novel time integration method for solving a large system of non-linear algebraic equations. Computer Modeling in Engineering and Sciences, 2008, 31(2): 71-84
|
[20]
|
Sznaier M, Rotstein H, Bu J Y, Sideris A. An exact solution to continuous-time mixed H2/H∞ control problems. IEEE Transactions on Automatic Control, 2000, 45(11): 2095-2101
|
[21]
|
Arkowitz M. Introduction to Homotopy Theory. Berlin: Springer, 2011
|
[22]
|
Helton J W, Merino O. Classical Control Using H∞ Methods: Theory, Optimization, and Design. Philadelphia: Society for Industrial Mathematics, 1998
|
[23]
|
Walsh J L. Interpolation and Approximation by Rational Functions in The Complex Domain. New York: American Mathematical Society, 1956
|
[24]
|
Blomqvist A, Nagamune R. An extension of a Nevanlinna-Pick interpolation solver to cases including derivative constraints. In: Proceedings of the 41st IEEE Conference on Decision and Control. Las Vegas, USA: IEEE, 2002. 2552-2557
|
[25]
|
Delsarte P, Genin Y, Kamp Y. On the role of the Nevanlinna-Pick problem in circuit and system theory. International Journal of Circuit Theory and Applications, 1981, 9(2): 177-187
|
[26]
|
Youla D C, Saito M. Interpolation with positive real functions. Journal of the Franklin Institute, 1967, 284(2): 77-108
|
[27]
|
Byrnes C I, Gusev S V, Lindquist A. From finite covariance windows to modeling filters: a convex optimization approach. SIAM Review, 2001, 43(4): 645-675
|
[28]
|
Nagamune R. Closed-loop shaping based on Nevanlinna-Pick interpolation with a degree bound. IEEE Transactions on Automatic Control, 2004, 49(2): 300-305
|
[29]
|
Blomqvist A, Fanizza G, Nagamune R. Computation of bounded degree Nevanlinna-Pick interpolants by solving nonlinear equations. In: Proceedings of the 42nd IEEE Conference on Decision and Control. Hawaii, USA: IEEE, 2003. 4511-4516
|
[30]
|
Doyle J C, Francis B, Tannenbaum A. Feedback Control Theory. New York: Macmillan Publishing Company, 1990
|