[1]
|
Sontag E D. Smooth stabilization implies coprime factorization. IEEE Transactions on Automatic Control, 1989, 34(4): 435-443
|
[2]
|
Angeli D. An almost global notion of input-to-state stability. IEEE Transactions on Automatic Control, 2004, 49(6): 866-874
|
[3]
|
Sontag E D, Wang Y. On characterizations of the input-to-state stability property. Systems & Control Letters, 1995, 24(5): 351-359
|
[4]
|
Sontag E D, Wang Y. New characterizations of input-to-state stability. IEEE Transactions on Automatic Control, 1996, 41(9): 1283-1294
|
[5]
|
Xie W X, Wen C Y, Li Z G. Input-to-state stabilization of switched nonlinear systems. IEEE Transactions on Automatic Control, 2001, 46(7): 1111-1116
|
[6]
|
Yeganegar N, Pepe P, Dambrine M. Input-to-state stability of time-delay systems: a link with exponential stability. IEEE Transactions on Automatic Control, 2008, 53(6): 1526-1531
|
[7]
|
Sun F L, Guan Z H, Zhang X H, Chen J C. Exponential-weighted input-to-state stability of hybrid impulsive switched systems. IET Control Theory and Applications, 2012, 6(3): 430-436
|
[8]
|
Liu J, Liu X Z, Xie W C. Input-to-state stability of impulsive and switching hybrid systems with time-delay. Automatica, 2011, 47(5): 899-908
|
[9]
|
Zhao P, Feng W, Kang Y. Stochastic input-to-state stability of switched stochastic nonlinear systems. Automatica, 2012, 48(10): 2569-2576
|
[10]
|
Spiliotis J, Tsinias J. Notions of exponential robust stochastic stability, ISS and their Lyapunov characterizations. International Journal of Robust and Nonlinear Control, 2003, 13(2): 173-187
|
[11]
|
Tsinias J. The concept of exponential input to state stability for stochastic systems and applications to feedback stabilization. Systems & Control Letters, 1999, 36(3): 221-229
|
[12]
|
Tsinias J. Stochastic input-to-state stability and applications to global feedback stabilization. International Journal of Control, 1998, 71(5): 907-930
|
[13]
|
Higham D J, Mao X R, Stuart A M. Exponential mean square stability of numerical solutions to stochastic differential equations. LMS Journal of Computation and Mathematics, 2003, 6: 297-313
|
[14]
|
Higham D J. Mean-square and asymptotic stability of the stochastic theta method. SIAM Journal on Numerical Analysis, 2000, 38(3): 753-769
|
[15]
|
Mao X R. Exponential stability of equidistant Euler-Maruyama approximations of stochastic differential delay equations. Journal of Computational and Applied Mathematics, 2007, 200(1): 297-316
|
[16]
|
Saito Y, Mitsui T. Stability analysis of numerical schemes for stochastic differential equations. SIAM Journal on Numerical Analysis, 1996, 33(6): 2254-2267
|
[17]
|
Hu G D, Liu M Z. Input-to-state stability of Runge-Kutta methods for nonlinear control systems. Journal of Computation and Applied Mathematics, 2007, 205(1): 633-639
|
[18]
|
Zhu Q, Hu G D, Zeng L. Mean-square exponential input-to-state stability of Euler-Maruyama method applied to stochastic control systems. Acta Automatica Sinica, 2010, 36(3): 406-411
|
[19]
|
Dekker K, Verwer J G. Stability of Runge-Kutta Methods for Stiff Nonlinear Equations. Amsterdam: North-Holland, 1984
|
[20]
|
Higham D J, Mao X R, Stuart A M. Strong convergence of Euler-type methods for nonlinear stochastic differential equations. SIAM Journal on Numerical Analysis, 2002, 40(3): 1041-1063
|