[1]
|
Pan S J, Tsang I W, Kwok J T, Yang Q. Domain adaptation via transfer component analysis. IEEE Transactions on Neural Networks, 2011, 22(2): 199-210
|
[2]
|
Xiang E W, Cao B, Hu D H, Yang Q. Bridging domains using world wide knowledge for transfer learning. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(6): 770-783
|
[3]
|
Joachims T. Transductive inference for text classification using support vector machines. In: Proceedings of the 16th International Conference on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers, 1999. 200-209
|
[4]
|
Ozawa S, Roy A, Roussinov D. A multitask learning model for online pattern recognition. IEEE Transactions on Neural Networks, 2009, 20(3): 430-445
|
[5]
|
Pan S J, Yang Q. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359
|
[6]
|
Bruzzone L, Marconcini M. Domain adaptation problems: a DASVM classification technique and a circular validation strategy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5): 770-787
|
[7]
|
Quanz B, Huan J. Large margin transductive transfer learning. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management (CIKM). New York, NY, USA: ACM, 2009. 1327-1336
|
[8]
|
Ben-David S, Blitzer J, Crammer K, Pereira F. Analysis of representations for domain adaptation. In: Proceedings of the 2006 Conference on Advances in Neural Information Processing Systems 19. Cambridge, MA: MIT Press, 2007. 137-144
|
[9]
|
Ling X, Dai W Y, Xue G R, Yang Q, Yu Y. Spectral domain-transfer learning. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2008. 488-496
|
[10]
|
Dai W Y, Xue G R, Yang Q, Yu Y. Co-clustering based classification for out-of-domain documents. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, California, USA: ACM, 2007. 210-219
|
[11]
|
Blitzer J, McDonald R, Pereira F. Domain adaptation with structural correspondence learning. In: Proceedings of the 2006 Conference on Empirical Methods Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2006. 120-128
|
[12]
|
Blitzer J, Dredze M, Pereira F. Biographies, bollywood, boom-boxes and blenders: domain adaptation for sentiment classification. In: Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics (ACL'07). 2007. 440-447
|
[13]
|
Sriperumbudur B K, Gretton A, Fukumizu K, Schölkopf B, Lanckriet G R G. Hilbert space embeddings and metrics on probability measures. Journal of Machine Learning Research, 2010, 11(3): 1517-1561
|
[14]
|
Gretton A, Harchaoui Z, Fukumizu K, Sriperumbudur B K. A fast, consistent kernel two-sample test. In: Proceedings of Advances in Neural Information Processing Systems 22, the 23rd Annual Conference on Neural Information Processing Systems (NIPS 2009). Red Hook, NY: MIT Press, 2010. 673-681
|
[15]
|
Vapnik V N. Statistical Learning Theory. New York: John Wiley and Sons, 1998
|
[16]
|
Zeng H, Cheung Y M. Feature selection and kernel learning for local learning-based clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1532-1547
|
[17]
|
Wu M R, Schölkopf B. Transductive classification via local learning regularization. In: Proceedings of the 11th International Conference Artificial Intelligence and Statistics. Cambridge, MA: MIT Press, 2007. 628-635
|
[18]
|
Hofmann T, Schölkopf B, Smola A J. Kernel methods in machine learning. Annals of Statistics, 2008, 36(3): 1171-1220
|
[19]
|
Sriperumbadur B K, Fukumizu K, Gretton A, Lanckriet G, Schoelkopf B. Kernel choice and classifiability for RKHS embeddings of probability distributions. In: Proceedings of Advances in Neural Information Processing Systems 22, the 23rd Annual Conference on Neural Information Processing Systems (NIPS 2009). Red Hook, NY: MIT Press, 2010. 1750-1758
|
[20]
|
Smola A J, Gretton A, Song L, Schölkopf B. A Hilbert space embedding for distributions. In: Proceedings of the 18th International Conference on Algorithmic Learning Theory. Sendai, Japan: Springer-Verlag, 2007. 13-31
|
[21]
|
Schölkopf B, Herbrich R, Smola A J. A generalized representer theorem. In: Proceedings of the 14th Annual Conference on Computational Learning Theory COLT'2001. Berlin Heidelberg: Springer Press, 2001. 416-426
|
[22]
|
Wu Y C, Liu Y F. Robust truncated hinge loss support vector machines. Journal of the American Statistical Association, 2007, 102(479): 974-983
|
[23]
|
Tao Jian-Wen, Wang Shi-Tong. Locality-preserved maximum information variance v-support vector machine. Acta Automatica Sinica, 2012, 38(1): 79-108 (陶剑文, 王士同. 局部保留最大信息差v-支持向量机. 自动化学报, 2012, 38(1): 79-108)
|
[24]
|
Belkin M, Niyogi P, Sindhwani V. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 2006, 7: 2399-2434
|
[25]
|
Cai D, He X F, Han J W, Zhang H J. Orthogonal Laplacianfaces for face recognition. IEEE Transactions on Image Processing, 2006, 15(11): 3608-3614
|
[26]
|
Gao J, Fan W, Jiang J, Han J W. Knowledge transfer via multiple model local structure mapping. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2008. 283-291
|
[27]
|
Huang J Y, Smola A J, Gretton A, Borgwardt K M, Schölkopf B. Correcting sample selection bias by unlabeled data. In: Proceedings of the 20th Annual Conference on Neural Information Processing Systems. Cambridge, MA: MIT Press, 2006. 601-608
|
[28]
|
Jiang W, Zavesky E, Chang S F, Loui A. Cross-domain learning methods for high-level visual concept classification. In: Proceedings of the 15th IEEE International Conference on Image Processing. San Diego, CA: IEEE, 2008. 161-164
|
[29]
|
Xu D, Chang S F. Video event recognition using kernel methods with multilevel temporal alignment. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(11): 1985-1997
|