2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Local特征和Regional特征的图像显著性检测

郭迎春 袁浩杰 吴鹏

郭迎春, 袁浩杰, 吴鹏. 基于Local特征和Regional特征的图像显著性检测. 自动化学报, 2013, 39(8): 1214-1224. doi: 10.3724/SP.J.1004.2013.01214
引用本文: 郭迎春, 袁浩杰, 吴鹏. 基于Local特征和Regional特征的图像显著性检测. 自动化学报, 2013, 39(8): 1214-1224. doi: 10.3724/SP.J.1004.2013.01214
GUO Ying-Chun, YUAN Hao-Jie, WU Peng. Image Saliency Detection Based on Local and Regional Features. ACTA AUTOMATICA SINICA, 2013, 39(8): 1214-1224. doi: 10.3724/SP.J.1004.2013.01214
Citation: GUO Ying-Chun, YUAN Hao-Jie, WU Peng. Image Saliency Detection Based on Local and Regional Features. ACTA AUTOMATICA SINICA, 2013, 39(8): 1214-1224. doi: 10.3724/SP.J.1004.2013.01214

基于Local特征和Regional特征的图像显著性检测

doi: 10.3724/SP.J.1004.2013.01214
基金项目: 

国家自然科学基金(60302018);河北省科技支撑计划项目(11213518D)资助

详细信息
    作者简介:

    袁浩杰 河北工业大学计算机科学与软件学院硕士研究生. 主要研究方向为数字图像处理, 图像检测.E-mail: yuanhaojie9@163.com

Image Saliency Detection Based on Local and Regional Features

Funds: 

Supported by National Natural Science Foundation of China (60302018) and Hebei Science and Technology Support Program (11213518D)

  • 摘要: 提出了一种基于颜色空间的Local特征和Regional特征的自然图像显著性检测方法. 该方法将图像分成8×8的子块, 计算多个尺度下每一个子块的Local特征和Regional特征, 并将其加权组合来确定子块的显著程度, 从而得到整个图像的显著特征. 此外, 通过计算4个颜色通道上的色度对比度, 获得显著物体的边缘. 将图像的显著特征与显著物体的边缘综合后得到图像中的显著目标. 实验结果显示, 本文提出的方法能够快速、清晰而准确地提取出图像中的显著性目标.
  • [1] Jian M W, Dong J Y, Ma J. Image retrieval using wavelet-based salient regions. The Imaging Science Journal, 2011, 59(4): 219-231
    [2] Hua Shun-Gang, Chen Guo-Peng, Shi Shu-Sheng. Image resizing algorithm based on similarity criterion. Computer Engineering, 2012, 38(4): 191-193(华顺刚, 陈国鹏, 时树胜. 基于相似性判据的图像尺寸调整算法. 计算机工程, 2012, 38(4): 191-193)
    [3] Gupta R, Chaudhury S. A scheme for attentional video compression. Pattern Recognition and Machine Intelligence, 2011, 6744: 458-465
    [4] Kim W, Kim C. A novel image importance model for content-aware image resizing. In: Proceedings of the 18th IEEE International Conference on Image. Brussels, Belgium: IEEE, 2011. 2469-2472
    [5] Shen Lan-Sun, Zhang Jing, Li Xiao-Guang. Image Retrieval and Compressed Domain Processing. Beijing: Posts and Telecom Press, 2008. 102-103(沈兰荪, 张菁, 李晓光. 图像检索与压缩域处理技术的研究. 北京: 人民邮电出版社, 2008. 102-103)
    [6] Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259
    [7] Zhang X L, Li Z P, Zhou T G, Fang F. Neural activities in V1 create a bottom-up saliency map. Neuron, 2012, 73(1): 183-192
    [8] Sun J Y, Chen R F, He J. A modified GBVS method with entropy for extracting bottom-up attention information. Lecture Notes in Electrical Engineering, 2012, 121: 765-770
    [9] Hansen L K, Karadogan S, Marchegiani L. What to measure next to improve decision making? On top-down task driven feature saliency. In: 2011 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain. Paris, France: IEEE. 2011. 86-87
    [10] Baluch F, Itti L. Mechanisms of top-down attention. Trends in Neurosciences, 2011, 34(4): 210-224
    [11] Itti L, Koch C. A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research, 2000, 40(6): 1489-1506
    [12] Itti L, Koch C. Computational modelling of visual attention. Nature Reviews Neuroscience, 2001, 2(3): 194-230
    [13] Jiao W, Peng Q M, Lv W X, Huang W J. Multiscale detection of salient regions. In: Proceedings of the 4th IEEE Conference on Industrial Electronics and Applications. Xi'an, China: IEEE, 2009. 2408-2411
    [14] Zhang J, Sun J D, Liu J, Yang C X, Yan H. Visual attention model based on multi-scale local contrast of low-level features. In: Proceedings of the 10th IEEE International Conference on Signal Processing (ICSP). Beijing, China, 2010. 902-905
    [15] Zhang Qiao-Rong, Gu Guo-Chang, Liu Hai-Bo, Xiao Hui-Min. Salient region detection using multi-scale analysis in the frequency domain. Journal of Harbin Engineering University, 2010, 31(3): 361-365 (张巧荣, 顾国昌, 刘海波, 肖会敏. 利用多尺度频域分析的图像显著区域检测. 哈尔滨工程大学学报, 2010, 31(3): 361-365)
    [16] Liu T, Yuan Z J, Sun J, Wang J D, Zheng N N, Tang X O, Shun H Y. Learning to detect a salient object. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(2): 353-367
    [17] Achanta R, Hemami S, Estrada F, Süsstrunk S. Frequency-tuned salient region detection. In: Prceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Miami Beach, Florida: IEEE, 2009. 1579-1604
    [18] Yao Jun-Cai. Color image compression technology based on chromatic aberration. Chinese Journal of Liquid Crystal and Displays, 2012, 27(3): 391-395 (姚军财. 基于颜色色差的彩色图像压缩技术研究. 液晶与显示, 2012, 27(3): 391-395)
    [19] Wang Xiang-Yang, Yang Hong-Ying, Zheng Hong-Liang, Wu Jun-Feng. A color block-histogram image retrieval based on visual weight. Acta Automatica Sinica, 2010, 36(10): 1489-1492 (王向阳, 杨红颖, 郑宏亮, 吴俊峰. 基于视觉权值的分块颜色直方图图像检索算法. 自动化学报, 2010, 36(10): 1489-1492)
    [20] Goferman S, Zelnik-Manor L, Tal A. Context-aware saliency detection. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, CA: IEEE, 2010. 2376-2383
    [21] Walther D, Koch C. Modeling attention to salient proto-objects. Neural Networks, 2006, 19(9): 1395-1407
    [22] Ma Y F, Zhang H J. Contrast-based image attention analysis by using fuzzy growing. In: Proceedings of the 11th ACM International Conference on Multimedia. New York: ACM, 2003. 374-381
    [23] Harel J, Koch C, Perona P. Graph-based visual saliency. Advances in Neural Information Processing Systems, 2007, 19: 545-552
    [24] Hou X D, Zhang L Q. Saliency detection: a spectral residual approach. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, MN: IEEE, 2007. 1-8
    [25] Achanta R, Estrada F, Wils P, Süsstrunk S. Salient region detection and segmentation. In: Proceedings of the 6th International Conference on Computer Vision Systems. Berlin, Heidelberg: Springer-Verlag, 2008, 5008: 66-75
  • 加载中
计量
  • 文章访问数:  3158
  • HTML全文浏览量:  146
  • PDF下载量:  3824
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-25
  • 修回日期:  2012-07-25
  • 刊出日期:  2013-08-20

目录

    /

    返回文章
    返回