2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于图像欧氏距离的二维局部多样性保持投影

高全学 高菲菲 郝秀娟 程洁

高全学, 高菲菲, 郝秀娟, 程洁. 基于图像欧氏距离的二维局部多样性保持投影. 自动化学报, 2013, 39(7): 1062-1070. doi: 10.3724/SP.J.1004.2013.01062
引用本文: 高全学, 高菲菲, 郝秀娟, 程洁. 基于图像欧氏距离的二维局部多样性保持投影. 自动化学报, 2013, 39(7): 1062-1070. doi: 10.3724/SP.J.1004.2013.01062
GAO Quan-Xue, GAO Fei-Fei, HAO Xiu-Juan, CHENG Jie. Image Euclidean Distance-based Two-dimensional Local Diversity Preserving Projection. ACTA AUTOMATICA SINICA, 2013, 39(7): 1062-1070. doi: 10.3724/SP.J.1004.2013.01062
Citation: GAO Quan-Xue, GAO Fei-Fei, HAO Xiu-Juan, CHENG Jie. Image Euclidean Distance-based Two-dimensional Local Diversity Preserving Projection. ACTA AUTOMATICA SINICA, 2013, 39(7): 1062-1070. doi: 10.3724/SP.J.1004.2013.01062

基于图像欧氏距离的二维局部多样性保持投影

doi: 10.3724/SP.J.1004.2013.01062
基金项目: 

国家自然科学基金(61271296, 60802075), 陕西省自然科学基础研究计划(2012JM8002), 浙江大学CAD & CG国家重点实验室开放课题(A1106), 中国博士后基金(2012M521747), 高等学校学科创新引智计划(B08038), 中央基本科研业务费,西安电子科技大学ISN国家重点实验室自主研究课题资助

详细信息
    通讯作者:

    高全学

Image Euclidean Distance-based Two-dimensional Local Diversity Preserving Projection

Funds: 

Supported by National Natural Science Foundation of China (61271296, 60802075), Natural Science Basic Research Plan in Shaanxi Province of China (2012JM8002), the Open Project Program of the State Key Laboratory of CAD & CG, Zhejiang University (A1106), China Postdoctoral Science Foundation (2012M521747), 111 Project of China (B08038), Fundamental Research Funds for the Central Universities of China, and the State Key Laboratory of Integrated Service Networks, Xidian University

  • 摘要: 主成分分析可以较好地保持数据的全局多样性几何属性, 在模式识别、机器学习、图像识别等领域有着很重要的作用. 缺点是他不能较好地保持局部数据的多样性几何属性, 且忽略了图像像素之间的相互关系, 导致算法性能不够好, 且对模式形变比较敏感. 对此问题, 提出了一种基于图像欧氏距离的二维局部多样性保持投影. 该方法利用邻接图描述局部数据之间的变化关系, 然后利用图像欧氏距离度量数据间的多样性几何属性, 有效地将图像像素之间的相互关系嵌入到目标函数中. 和主成分分析相比, 所提方法较好地保持了局部数据的多样性几何属性, 而且明确考虑了图像像素之间的相互关系, 对模式形变具有好的鲁棒性. 在Yale, AR及PIE三个人脸库上的实验结果证明了所提算法的有效性.
  • [1] Yan S C, Xu D, Zhang B Y, Zhang H J. Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51
    [2] Fukunaga K. Introduction to statistical Pattern Recognition (Second edition). New York: Academic Press, 1990
    [3] Turk M A, Pentland A P. Face recognition using eigenfaces. In: Proceedings of the 1991 IEEE Computer Society Conferences on Computer Vision and Pattern Recognition. Maui, HI: IEEE, 1991. 586-591
    [4] Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720
    [5] Yang J, Zhang D, Frangi A F, Yang J Y. Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131-137
    [6] Gao Quan-Xue, Liang Yan, Pan Quan, Cheng Yong-Mei. Face recognition based on expressive features. Acta Automatica Sinica, 2006, 32(3): 386-392 (高全学, 梁彦, 潘泉, 程咏梅. 基于描述特征的人脸识别研究. 自动化学报, 2006, 32(3): 386-392)
    [7] He R, Hu B G, Zheng W S, Kong X W. Robust principal component analysis based on maximum correntropy criterion. IEEE Transactions on Image Processing, 2011, 20(6): 1485-1494
    [8] Fang Wei-Tao, Ma Peng, Cheng Zheng-Bin, Yang Dan, Zhang Xiao-Hong. 2-dimensional projective non-negative matrix factorization and its application to face recognition. Acta Automatica Sinica, 2012, 38(9): 1503-1512 (方蔚涛, 马鹏, 成正斌, 杨丹, 张小洪. 二维投影非负矩阵分解算法及其在人脸识别中的应用. 自动化学报, 2012, 38(9): 1503-1512)
    [9] Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500): 2323-2326
    [10] Kong D G, Ding C H Q, Huang H, Nie F P. An iterative locally linear embedding algorithm. In: Proceeding of the 29th International Conference on Machine Learning (ICML), Edinburgh, Scotland, 2012. 1647-1654
    [11] Tenenbaum J B, de Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290(5500): 2319-2323
    [12] You D, Hamsici O C, Martinez A M. Kernel optimization in discriminant analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3): 631-638
    [13] Scholkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 15(5): 1299-1319
    [14] He X F, Yan S C, Hu Y X, Niyogi P, Zhang H J. Face recognition using laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340
    [15] He X F, Cai D, Yan S C, Zhang H J. Neighborhood preserving embedding. In: Proceedings of the 10th IEEE International Conference on Computer Vision. Beijing, China: IEEE, 2005. 1208-1213
    [16] Fan Z Z, Xu Y, Zhang D. Local linear discriminant analysis framework using sample neighbors. IEEE Transactions on Neural Networks, 2011, 22(7): 1119-1132
    [17] Huang Y, Xu D, Nie F P. Semi-supervised dimension reduction using trace ratio criterion. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(3): 519-526
    [18] Gao Quan-Xue, Xie De-Yan, Xu Hui, Li Yuan-Zheng, Gao Xi-Quan. Supervised feature extraction based on information fusion of local structure and diversity information. Acta Automatica Sinica, 2010, 36(8): 1107-1114 (高全学, 谢德燕, 徐辉, 李远征, 高西全. 融合局部结构和差异信息的监督特征提取算法. 自动化学报, 2010, 36(8): 1107-1114)
    [19] Hu D W, Feng G Y, Zhou Z T. Two-dimensional locality preserving projections (2DLPP) with its application to palmprint recognition. Pattern Recognition, 2007, 40(1): 339-342
    [20] Gao Q X, Xu H, Li Y Y, Xie D Y. Two-dimensional supervised local similarity and diversity projection. Pattern Recognition, 2010, 43(10): 3359-3363
    [21] Gao Q X, Liu J J, Zhang H J, Hou J, Yang X J. Enhanced fisher discriminant criterion for image recognition. Pattern Recognition, 2012, 45(10): 3717-3724
    [22] Gao Q X, Zhang H J, Liu J J. Two-dimensional margin, similarity and variation embedding. Neurocomputing, 2012, 86: 179-183
    [23] Postnikov M M. Lectures in Geometry, Semester I: Analytic Geometry. Moscow: Mir Publishers, 1982
    [24] Wang L W, Zhang Y, Feng J F. On the Euclidean distance of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1334-1339
    [25] Golub G H, Van Loan C F. Matrix Computations (Third edition). Baltimore: The Johns Hopkins University Press, 1996
  • 加载中
计量
  • 文章访问数:  1584
  • HTML全文浏览量:  56
  • PDF下载量:  1686
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-07
  • 修回日期:  2013-01-06
  • 刊出日期:  2013-07-20

目录

    /

    返回文章
    返回