[1]
|
Ye M, Li C F, Chen G H, Wu J. EECS: an energy efficient clustering scheme in wireless sensor networks. In: Proceedings of the 24th IEEE International Performance, Computing, and Communications Conference. New York, USA: IEEE, 2005. 535-540
|
[2]
|
[2] Xu Y, Heidemann J, Estrin D. Geography-informed energy conservation for ad hoc routing. In: Proceedings of the 7th ACM Annual International Conference on Mobile Computing and Networking. New York, USA: Association for Computing Machinery, 2001. 70-84
|
[3]
|
[3] Deng J, Han Y S, Heinzelman W B, Varshney P K. Balanced-energy sleep scheduling scheme for high-density cluster-based sensor networks. Computer Communications, 2005, 28(14): 1631-1642
|
[4]
|
[4] Hong X Y, Xu K X, Gfria M. Scalable routing protocols for mobile ad hoc networks. IEEE Network, 2002, 16(4): 11-20
|
[5]
|
[5] Zhang B X, Mouftah H T. Efficient grid-based routing in wireless multi-hop networks. In: Proceedings of the 10th IEEE Symposium on Computers and Communications (ISCC). Cartagena, Cobobia: Institute of Electrical and Electronics Engineers Inc, 2005. 367-372
|
[6]
|
[6] Deb B, Bhatnagar S, Nath B. A Topology Discovery Algorithm for Sensor Networks with Applications to Network Management, DCS Technical Report DCS-TR-441, Rutgers University, 2001
|
[7]
|
Xing Yun-Bing, Shi Hao-Shan, Zhao Hong-Gang. Improvement of LEACH protocol based on spare nodes for wireless sensor networks. Chinese Journal of Sensors and Actuators, 2007, 20(7): 1592-1596 (邢云冰, 史浩山, 赵洪钢. 基于备用节点的无线传感器网络LEACH协议的改进. 传感技术学报, 2007, 20(7): 1592-1596)
|
[8]
|
Jia Yong-Can, Liu Yu-Hua, Xu Kai-Hua, Gao Jing-Ju. Hierarchical clustering routing scheme based on LEACH in wireless sensor network. Computer Engineering, 2009, 35(11): 74-76 (贾永灿, 刘玉华, 许凯华, 高景菊. WSN 中基于 LEACH 的多层分簇路由方案. 计算机工程, 2009, 35(11): 74-76)
|
[9]
|
Xie Shan-Shan, Bai Guang-Wei, Cao Lei. Protocols of determining connected dominating sets based on region partition. Computer Engineering and Design, 2012, 33(4): 1319-1323 (谢珊珊, 白光伟, 曹磊. 基于区域划分的连通支配集协议. 计算机工程与设计, 2012, 33(4): 1319-1323)
|
[10]
|
Bian Yong-Zhao, Wang Jun, Yu Hai-Bin, Zhang Jian-Hua. Construction of fault tolerant connected dominating sets in WSN. Application Research of Computers, 2010, 27(1): 292 -294, 313 (卞永钊, 王军, 于海斌, 张建华. 无线传感器网络中具有容错能力的连通支配集构造算法. 计算机应用研究, 2010, 27(1): 292-294, 313)
|
[11]
|
Hong Zhen, Yu Li, Zhang Gui-Jun, Chen You-Rong. Topology construction based on minimum connected dominating set for wireless sensor networks. Journal of Electronics and Information Technology, 2012, 34(8): 2000-2006 (洪榛, 俞立, 张贵军, 陈友荣. 基于最小连通支配集的无线传感网拓扑构建研究. 电子与信息学报, 2012, 34(8): 2000-2006)
|
[12]
|
Llorca J, Kalantari M, Milner S D, Davis C C. A quadratic optimization method for connectivity and coverage control in backbone-based wireless networks. Ad Hoc Networks, 2009, 7(3): 614-621
|
[13]
|
Liu Quan-Long. Research on Complex Networks Dependability [Master dissertation], Beijing University of Posts and Telecommunications, China, 2007 (刘全龙. 复杂网络可靠性研究 [硕士学位论文], 北京邮电大学, 中国, 2007)
|
[14]
|
Holme P, Kim B J, Yoon C N, Han S K. Attack vulnerability of complex networks. Physical Review E, 2002, 65(5): 96-109
|
[15]
|
Cohen R, Erez K, Ben-Avraham D, Havlin S. Resilience of the internet to random breakdowns. Physical Review Letters, 2000, 85(21): 4626-4628
|
[16]
|
Vzquez A, Moreno Y. Resilience to damage of graphs with degree correlations. Physical Review E, 2003, 67(1): 95-101
|
[17]
|
Rozenfeld A F, Cohen R, Ben-Avraham D, Havlin S. Scale-free networks on lattices. Physical Review Letters, 2002, 89(21): 695-701
|
[18]
|
Ramanathan R, Rosales-Hain R. Topology control of multihop wireless networks using transmit power adjustment. In: Proceedings of IEEE INFOCOM 2000. Tel Aviv, Israel: IEEE, 2000. 404-413
|
[19]
|
Li N, Hou J C. Topology control in heterogeneous wireless networks: problems and solutions. In: Proceedings of IEEE INFOCOM 2004. Urbana, USA: IEEE, 2004. 232-243
|
[20]
|
Butterfield J, Dantu K, Gerkey B, Jenkins O C, Sukhatme G S. Autonomous biconnected networks of mobile robots. In: Proceedings of the 6th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks and Workshops. Berlin, Germany: IEEE, 2008. 640-646
|
[21]
|
Basu P, Redi J. Movement control algorithms for realization of fault-tolerant ad hoc robot networks. IEEE Network, 2004, 18(4): 36-44
|
[22]
|
Das S, Liu H, Nayak A, Stojmenović I. A localized algorithm for bi-connectivity of connected mobile robots. Telecommunication Systems, 2009, 40(3-4): 129-140
|
[23]
|
Xu Li, Frey H, Santoro N, Stojmenovic I. Localized sensor self-deployment for guaranteed coverage radius maximization. In: Proceedings of ICC 2009 - 2009 IEEE International Conference on Communications. Dresden, Germany: IEEE, 2009. 1-5
|
[24]
|
Casteigts A, Albert J, Chaumette S, Nayak A, Stojmenović I. Biconnecting a network of mobile robots using virtual angular forces. In: Proceedings of the 72nd IEEE Vehicular Technology Conference Fall. Ottawa, Canada: IEEE, 2010. 1-5
|
[25]
|
Liu H, Chu X W, Leung Y W, Du R. Simple movement control algorithm for bi-connectivity in robotic sensor networks. IEEE Journal on Selected Areas in Communications, 2010, 28(7): 994-1005
|
[26]
|
Wu Jun, Tan Yue-Jin. Study on measure of complex network invulnerability. Journal of Systems Engineering, 2005, 20(2): 128-131 (吴俊, 谭跃进. 复杂网络抗毁性测度研究. 系统工程学报, 2005, 20(2): 128-131)
|
[27]
|
Liu Xiao-Lin, Wang Neng. Study on measures of communication network invulnerability. Journal of Shanghai Normal University (Natural Sciences), 2006, 35(5): 38-41 (刘啸林, 王能. 通信网络抗毁性量度研究. 上海师范大学学报 (自然科学版), 2006, 35(5): 38-41)
|
[28]
|
Xing Qing-Hua, Liu Fu-Xian. Modeling on area air defense optimization deployment system. Systems Engineering and Electronics, 2006, 28(5): 712-715 (邢清华, 刘付显. 区域防空部署优化系统建模. 系统工程与电子技术, 2006, 28(5): 712-715)
|
[29]
|
Han Song-Chen, Shi De-Ping. Optimization for air-defense combat configuration via simulated annealing algorithm. Acta Aeronautica Et Astronautica Sinica, 1999, 20(5): 478 -480 (韩松臣, 石德平. 基于模拟退火算法的防空作战布局优化. 航空学报, 1999, 20(5): 478-480)
|
[30]
|
Liu Ming, Li Wei-Min, Wang Ying-Long, Liu Yi-Jing. Optimization of the regional air defense disposition based on genetic algorithms. Systems Engineering and Electronics, 2003, 25(2): 191-193 (刘铭, 李为民, 王颖龙, 刘毅静. 基于遗传算法的区域防空部署优化研究. 系统工程与电子技术, 2003, 25(2): 191-193)
|
[31]
|
Wang Zhong-Jie, Li Xia, Zhou Qi-Ming, Wan Fan-Bing. Study on decision-making problems in multi-constrained deploying a radar network system. Fire Control and Command Control, 2008, 33(12): 133-136 (王中杰, 李侠, 周启明, 万凡兵. 多约束条件的雷达组网系统部署决策问题. 火力与指挥控制, 2008, 33(12): 133-136)
|
[32]
|
Liu Jian. Optimum selection and improvement of disposition schemes for ground air-defence operation. Fire Control and Command Control, 2005, 30(2): 97-99 (刘健. 地面防空作战部署方案优选与改进方法. 火力与指挥控制, 2005, 30(2): 97-99)
|
[33]
|
Chen Jie, Chen Chen, Zhang Juan, Xin Bin. Deployment optimization for point air defense based on memetic algorithm. Acta Automatica Sinica, 2010, 36(2): 242-246 (陈杰, 陈晨, 张娟, 辛斌. 基于Memetic算法的要地防空优化部署方法. 自动化学报, 2010, 36(2): 242-246)
|
[34]
|
Tanergcl T, Maras H, Gencer C, Aygnes H. A decision support system for locating weapon and radar positions in stationary point air defence. Information Systems Frontiers, 2012, 14(2): 423-444
|
[35]
|
Karasakal O, Kandiller L, zdemirel N E. A branch and bound algorithm for sector allocation of a naval task group. Naval Research Logistics, 2011, 58(7): 655-669
|
[36]
|
Cai H P, Liu J X, Chen Y W, Wang H. Survey of the research on dynamic weapon-target assignment problem. Journal of Systems Engineering and Electronics, 2006, 17(3): 559-565
|
[37]
|
Athans M. Command and control (C2) theory: a challenge to control science. IEEE Transactions on Automatic Control, 1987, 32(4): 286-293
|
[38]
|
Cetin E, Esen S T. A weapon-target assignment approach to media allocation. Applied Mathematics and Computation, 2006, 175(2): 1266-1275
|
[39]
|
Hosein P A, Athans M. Preferential Defense Strategies. Part I: The Static Case, Technical Report LIPS-P-2002, MIT Laboratory for Information and Decision Systems with Partial Support, USA, 1990
|
[40]
|
Hosein P A, Athans M. Preferential Defense Strategies. Part II: The Dynamic Case, Technical Report LIPS-P-2003, MIT Laboratory for Information and Decision Systems with partial support, USA, 1990
|
[41]
|
Lloyd S P, Witsenhausen H S. Weapons allocation is NP-complete. In: Proceedings of the 1986 IEEE Summer Simulation Conference. Reno, Nevada, USA: IEEE, 1986. 1054- 1058
|
[42]
|
Cai Huai-Ping, Liu Jing-Xu, Chen Ying-Wu. On the Markov characteristic of dynamic weapon target assignment problem. Journal of National University of Defense Technology, 2006, 28(3): 125-127 (蔡怀平, 刘靖旭, 陈英武. 动态武器目标分配问题的马尔可夫性. 国防科技大学学报, 2006, 28(3): 125-127)
|
[43]
|
Chen Ying-Wu, Cai Huai-Ping, Xing Li-Ning. An improved algorithm of policies optimization of dynamic weapon target assignment problem. Systems Engineering - Theory Practice, 2007, 27(7): 160-165 (陈英武, 蔡怀平, 邢立宁. 动态武器目标分配问题中策略优化的改进算法. 系统工程理论与实践, 2007, 27(7): 160-165)
|
[44]
|
Yang Zu-Kuai, Liu Ding-Chen. Optimization model analysis of dynamic WTA based on Markov decision-making. Fire Control Command Control, 2003, 28(5): 25-27 (杨祖快, 刘鼎臣. 基于马尔柯夫决策过程动态WTA最优化模型分析. 火力与指挥控制, 2003, 28(5): 25-27)
|
[45]
|
Xin B, Chen J, Peng Z H, Dou L H, Zhang J. An efficient rule-based constructive heuristic to solve dynamic weapon-target assignment problem. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, 2011, 41(3): 598-606
|
[46]
|
Li J J, Cong R, Xiong J G. Dynamic WTA optimization model of air defense operation of warships' formation. Journal of Systems Engineering and Electronics, 2006, 17(1): 126-131
|
[47]
|
You Zhi-Feng, Li Yong, Liang Yu, Hao Hai-Yan. Analysis of the evolutionary group's decision-making mechanism for the large area air defence. Modern Defense Technology, 2005, 33(4): 14-17 (尤志锋, 李勇, 梁宇, 郝海燕. 大区域防空的进化群决策机制研究. 现代防御技术, 2005, 33(4): 14-17)
|
[48]
|
Galati D G, Simaan M A. Near-Nash targeting strategies for heterogeneous teams of autonomous combat vehicles. In: Proceedings of the 2008 SPIE 6962, Unmanned Systems Technology X. Orlando, FL, USA: SPIE, 2008. DOI: 10.1117/12.782108
|
[49]
|
Pan Shu-Shan, Wu Xiao-Yun, Ma Da-Wei, Qiao Yan-Ling. Weapon-target assignment based on the theory of rough sets. Journal of Projectiles, Rockets, Missiles and Guidance, 2005, 25(1): 56-59 (潘书山, 吴晓云, 马大为, 乔艳玲. 基于粗集理论的武器目标分配. 弹箭与制导学报, 2005, 25(1): 56-59)
|
[50]
|
He Zheng-Hong, Zhang Jin-Cheng. A firepower assignment model of aerial defense based on expert systems. Systems Engineering and Electronics, 2001, 23(7): 44-46 (贺正洪, 张金成. 基于专家系统的防空火力分配模型. 系统工程与电子技术, 2001, 23(7): 44-46)
|
[51]
|
Sahin M A, Leblebicioglu K. A standard expert system for weapon target assignment problem. In: Proceedings of the 2009 International Symposium on Performance Evaluation and Computer Telecommunication Systems. Ankara, Turkey: IEEE, 2009. 221-224
|
[52]
|
Xin B, Chen J, Zhang J, Fang H, Peng Z H. Hybridizing differential evolution and particle swarm optimization to design powerful optimizers: a review and taxonomy. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 2012, 42(5): 744-767
|
[53]
|
Jackson K, Farbman M S. Trajectory reconstruction with a least squares sliding window (LSSW) filter. In: Proceedings of the 2007 AIAA Guidance, Navigation, and Control Conference. Hilton Head, SC, United States: AIAA, 2007. 2058 -2080
|
[54]
|
Janczak D, Sankowski M. Data fusion for ballistic targets tracking using least squares. AEU International Journal of Electronics and Communications, 2012, 66(6): 512-519
|
[55]
|
Farina A, Ristic B, Benvenuti D. Tracking a ballistic target: comparison of several nonlinear filters. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(3): 854-867
|
[56]
|
Du C P, Sun H D, Zhou D Y, Song B F. On ballistic parameter identification method based on ant colony algorithm. Electronics Optics and Control, 2008, 15(7): 4-6, 19
|
[57]
|
Dai Yao, Wang De-Hu, Ma Ye. Study of nonlinear ballistic parameters identification based on neural network contrary model. Journal of Ballistics, 2005, 17(1): 18-22 (戴耀, 汪德虎, 马野. 基于神经网络逆模型的非线性外弹道参数辨识. 弹道学报, 2005, 17(1): 18-22)
|
[58]
|
Wacholder E. A neural network-based optimization algorithm for the static weapon-target assignment problem. INFORMS Journal on Computing, 1989, 1(4): 232-246
|
[59]
|
Kang Ying-Jun, Li Wei-Min, Li Xu-Wu. A study of the optimal aerial defense firepower distribution based on HNN. Fire Control and Command Control, 2003, 28(6): 35-37 (康英军, 李为民, 李续武. Hopfield神经网络的防空火力最优分配问题. 火力与指挥控制, 2003, 28(6): 35-37)
|
[60]
|
Bertsekas D P, Homer M L, Logan D A, Patek S D, Sandell N S. Missile defense and interceptor allocation by neuro-dynamic programming. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, 2000, 30(1): 42-51
|
[61]
|
Cai Huai-Ping, Chen Ying-Wu, Xing Li-Ning. Research on dynamic weapon target assignment problem based on SVNTS algorithm. Computer Engineering and Applications, 2006, 42(31): 7-10, 22 (蔡怀平, 陈英武, 邢立宁. SVNTS算法的动态武器目标分配问题研究. 计算机工程与应用, 2006, 42(31): 7-10, 22)
|
[62]
|
Bogdanowicz Z R. A new efficient algorithm for optimal assignment of smart weapons to targets. Computers and Mathematics with Applications, 2009, 58(10): 1965-1969
|
[63]
|
Blodgett D E, Gendreau M, Guertin F, Potvin J Y, Sguin R. A tabu search heuristic for resource management in naval warfare. Journal of Heuristics, 2003, 9(2): 145-169
|
[64]
|
Madni A M, Andrecut M. Efficient heuristic approach to the weapon-target assignment problem. Journal of Aerospace Computing, Information, and Communication, 2009, 6(6): 405-414
|
[65]
|
Ahuja R K, Kumar A, Jha K C, Orlin J B. Exact and heuristic algorithms for the weapon-target assignment problem. Operations Research, 2007, 55(6): 1136-1146
|
[66]
|
Lee M Z. Constrained weapon-target assignment: enhanced very large scale neighborhood search algorithm. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, 2010, 40(1): 198-204
|
[67]
|
Malhotra A, Jain R K. Genetic algorithm for optimal weapon allocation in multilayer defence scenario. Defence Science Journal, 2001, 51(3): 285-293
|
[68]
|
Liu Mei, Zhao Gang, Quan Tai-Fan. New-type genetic algorithm for weapon-target assignment of the antiaircraft command system. Systems Engineering and Electronics, 2005, 27(3): 456-460 (刘梅, 赵刚, 权太范. 新型遗传算法在防空指挥系统目标分配中的应用. 系统工程与电子技术, 2005, 27(3): 456-460)
|
[69]
|
Wang Wei, Cheng Shu-Chang, Zhang Yu-Zhi. Research on approach for a type of weapon target assignment problem solving by genetic algorithm. Systems Engineering and Electronics, 2008, 30(9): 1708-1711 (王玮, 程树昌, 张玉芝. 基于遗传算法的一类武器目标分配方法研究. 系统工程与电子技术, 2008, 30(9): 1708-1711)
|
[70]
|
Lu H Q, Zhang H J, Zhang X J, Han R X. An improved genetic algorithm for target assignment, optimization of naval fleet air defense. In: Proceedings of the 6th World Congress on Intelligent Control and Automation. Dalian, China: IEEE, 2006. 3401-3405
|
[71]
|
Ma Hai-Tao, Zhao Wei-Dong. The fire distribution problem of ADG made up of AGM based on genetic algorithm. Fire Control and Command Control, 2006, 31(4): 36-38 (马海涛, 赵伟东. 基于遗传算法的弹炮混编防空群火力分配. 火力与指挥控制, 2006, 31(4): 36-38)
|
[72]
|
Wu Ling, Lu Fa-Xing, Jia Pei-Fa. Meta-level control of the anytime algorithm for the dynamic weapon-target allocation problem. Journal of Tsinghua University (Science and Technology), 2008, 48(S2): 1762-1765 (吴玲, 卢发兴, 贾培发. 动态武器目标分配问题中改进遗传算法的元级控制. 清华大学学报(自然科学版), 2008, 48(S2): 1762-1765)
|
[73]
|
Xiu Chun-Bo, Liu Xiang-Dong, Zhang Yu-He, Tang Yun-Yu. A chaos optimization algorithm for firepower distribution. Fire Control and Command Control, 2006, 31(1): 14- 16 (修春波, 刘向东, 张宇河, 唐运虞. 一种用于求解火力分配问题的混沌优化算法. 火力与指挥控制, 2006, 31(1): 14-16)
|
[74]
|
Deng Chang-Shou, Liang Chang-Yong. Hybrid coding differential evolution algorithm for weapon-target assignment problem. Application Research of Computers, 2009, 26(1): 74-76 (邓长寿, 梁昌勇. 求解武器--目标分配问题的混合编码差异演化算法. 计算机应用研究, 2009, 26(1): 74-76)
|
[75]
|
Zeng X P, Zhu Y L, Nan L, Hu K Y, Niu B, He X X. Solving weapon-target assignment problem using discrete particle swarm optimization. In: Proceedings of the 6th World Congress on Intelligent Control and Automation. Dalian, China: IEEE, 2006. 3562-3565
|
[76]
|
Wang L, Wang H Y, Qiu Z M. An improved artificial immune algorithm for solving weapon-target assignment problem. In: Proceedings of the 7th World Congress on Intelligent Control and Automation. Chongqing, China: IEEE, 2008. 8622-8625
|
[77]
|
Kwon O, Lee K, Kang D H, Park S. A branch-and-price algorithm for a targeting problem. Naval Research Logistics, 2007, 54(7): 732-741
|
[78]
|
Karasakal O. Air defense missile-target allocation models for a naval task group. Computers and Operations Research, 2008, 35(6): 1759-1770
|
[79]
|
Lee Z J, Su S F, Lee C Y. An immunity-based ant colony optimization algorithm for solving weapon-target assignment problem. Applied Soft Computing, 2002, 2(1): 39-47
|
[80]
|
Lee Z J, Su S F, Lee C Y. Efficiently solving general weapon-target assignment problem by genetic algorithms with greedy eugenics. IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics, 2003, 33(1): 113- 121
|
[81]
|
Fu T P, Liu Y S, Chen J H. Improved genetic and ant colony optimization algorithm for regional air defense WTA problem. In: Proceedings of the 1st International Conference on Innovative Computing, Information and Control. Beijing, China: IEEE, 2006. 226-229
|
[82]
|
Bisht S. Hybrid genetic-simulated annealing algorithm for optimal weapon allocation in multilayer defence scenario. Defence Science Journal, 2004, 54(3): 395-405
|
[83]
|
Khosla D, Nichols T. Hybrid evolutionary algorithms for network-centric command and control. In: Proceedings of SPIE 6249, Defense Transformation and Network-Centric Systems. Orlando, FL, USA: SPIE, 2006. DOI: 10.1117/12.782108
|
[84]
|
Wang Xiao-Yi, Hou Chao-Zhen, Yuan Ju-Mei, Guo Fei, Hao Wei. Modeling and optimization method on antiaircraft firepower allocation. Control and Decision, 2006, 21(8): 913- 917 (王小艺, 侯朝桢, 原菊梅, 郭飞, 郝伟. 防空火力分配建模及优化方法研究. 控制与决策, 2006, 21(8): 913-917)
|
[85]
|
Chen Hua-Dong, Wang Shu-Zong, Wang Hang-Yu. Research of firepower assignment with multi-launcher and multi-weapon based on a hybrid particle swarm optimization. Systems Engineering and Electronics, 2008, 30(5): 880-883 (陈华东, 王树宗, 王航宇. 基于混合粒子群算法的多平台多武器火力分配研究. 系统工程与电子技术, 2008, 30(5): 880-883)
|
[86]
|
Ding Zhu, Ma Da-Wei, Tang Ming-Duan, Zhang Xue-Feng. TSAPSO: a hybrid search algorithm of tabu search and annealing particle swarm optimization for weapon-target assignment. Journal of System Simulation, 2006, 18(9): 2480 -2483 (丁铸, 马大为, 汤铭端, 张学锋. 基于禁忌退火粒子群算法的火力分配. 系统仿真学报, 2006, 18(9): 2480-2483)
|
[87]
|
Chen J, Xin B, Peng Z H, Dou L H, Zhang J. Evolutionary decision-makings for the dynamic weapon-target assignment problem. Science in China Series F: Information Sciences, 2009, 52(11): 2006-2018
|
[88]
|
Xin B, Chen J, Zhang J, Dou L H, Peng Z H. Efficient decision makings for dynamic weapon-target assignment by virtual permutation and tabu search heuristics. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 2010, 40(6): 649-662
|
[89]
|
Xin B, Chen J. An estimation of distribution algorithm with efficient constructive repair/improvement operator for the dynamic weapon-target assignment. In: Proceedings of the 31st Chinese Control Conference. Hefei, China: IEEE, 2012. 2346-2351
|
[90]
|
Grewal M S, Glover K. Identifiability of linear and nonlinear dynamical systems. IEEE Transactions on Automatic Control, 1976, 21(6): 833-837
|
[91]
|
Berntsen H E, Balchen J G. Identifiability of linear dynamical systems. In: Proceedings of the 3rd IFAC Symposium on Identification and System Parameter Estimation. The Hague, Delft, Netherlands: North Holland, 1973. 871-874
|
[92]
|
Siferd R E, Maybeck P S. Identifiability of nonlinear dynamical systems. In: Proceedings of the 21st IEEE Conference on Decision and Control. Orlando, FL, USA: IEEE, 1982. 1167-1171
|
[93]
|
Goodrich R L, Caines P E. Necessary and sufficient conditions for local second-order identifiability. IEEE Transactions on Automatic Control, 1979, 24(1): 125-127
|
[94]
|
Neemcov J. Structural identifiability of polynomial and rational systems. Mathematical Biosciences, 2010, 223(2): 83 -96
|
[95]
|
Evans N D, Chapman M J, Chappell M J, Godfrey K R. Identifiability of uncontrolled nonlinear rational systems. Automatica, 2002, 38(10): 1799-1805
|
[96]
|
Wang L Y, Yin G G, Zhang J F. Joint identification of plant rational models and noise distribution functions using binary-valued observations. Automatica, 2006, 42(4): 535- 547
|
[97]
|
Fliess M. Local realization of linear and nonlinear time-varying systems. In: Proceedings of the 21st IEEE Conference on Decision and Control. Orlando, FL, USA: IEEE, 1982. 733-738
|
[98]
|
Tunali E, Tarn T J. New results for identifiability of nonlinear systems. IEEE Transactions on Automatic Control, 1987, 32(2): 146-154
|
[99]
|
Joly-Blanchard G, Denis-Vidal L. Some remarks about an identifiability result of nonlinear systems. Automatica, 1998, 34(9): 1151-1152
|
[100]
|
Denis-Vidal L, Joly-Blanchard G. An easy to check criterion for (un)indentifiability of uncontrolled systems and its applications. IEEE Transactions on Automatic Control, 2000, 45(4): 768-771
|
[101]
|
Pohjanpalo H. System identifiability based on the power series expansion of the solution. Mathematical Biosciences, 1978, 41(1-2): 21-33
|
[102]
|
Walter E. Identifiability of State Space Models: with Applications to Transformation Systems. Berlin: Springer-Verlag, 1982
|
[103]
|
Denis-Vidal L, Joly-Blanchard G, Noiret C. Some effective approaches to check the identifiability of uncontrolled nonlinear systems. Mathematics and Computers in Simulation, 2001, 57(1-2): 35-44
|
[104]
|
Diop S, Fliess M. Nonlinear observability, identifiability, and persistent trajectories. In: Proceedings of the 30th IEEE Conference on Decision and Control. Brighton, UK: IEEE, 1991. 714-719
|
[105]
|
Ljung L, Glad T. On global identifiability for arbitrary model parametrizations. Automatica, 1994, 30(2): 265-276
|
[106]
|
Denis-Vidal L, Joly-Blanchard G. Equivalence and identifiability analysis of uncontrolled nonlinear dynamical systems. Automatica, 2004, 40(2): 287-292
|
[107]
|
Yates J W, Evans N D, Chappell M J. Structural identifiability analysis via symmetries of differential equations. Automatica, 2009, 45(11): 2585-2591
|
[108]
|
Strejc V. Least squares parameter estimation. Automatica, 1980, 16(5): 535-550
|
[109]
|
Mowery V. Least squares recursive differential-corection estimation in nonlinear problems. IEEE Transactions on Automatic Control, 1965, 10(4): 399-407
|
[110]
|
Kukreja S L, Kearney R E, Galiana H L. A least-squares parameter estimation algorithm for switched Hammerstein systems with applications to the VOR. IEEE Transactions on Biomedical Engineering, 2005, 52(3): 431-444
|
[111]
|
Vajda S, Valk P, Godfrey K R. Direct and indirect least squares methods in continuous-time parameter estimation. Automatica, 1987, 23(6): 707-718
|
[112]
|
Angeby J. Estimating signal parameters using the nonlinear instantaneous least squares approach. IEEE Transactions on Signal Processing, 2000, 48(10): 2721-2732
|
[113]
|
Goethals I, Pelckmans K, Suykens J A K, De Moor B. Identification of MIMO Hammerstein models using least squares support vector machines. Automatica, 2005, 41(7): 1263- 1272
|
[114]
|
Gao Jian, He Bing-Geng. Neural network for solving nonlinear least squares problem. Journal of Mathematics for Technology, 2002, 18(4): 29-31 (高坚, 贺秉庚. 用神经网络解非线性最小二乘问题. 工科数学, 2002, 18(4): 29-31)
|
[115]
|
Kalman R E. A new approach to linear filtering and prediction problems. Transactions of the ASME Journal of Basic Engineering, 1960, 82: 35-45
|
[116]
|
Chen Jie, Deng Fang, Chen Wen-Jie. Parameters identification from indirect data and its application in the identification of ballistic parameters. Transactions of Beijing Institute of Technology, 2007, 27(S1): 118-122 (陈杰, 邓方, 陈文颉. 基于间接数据的参数辨识及其在弹道模型中的应用. 北京理工大学学报, 2007, 27(S1): 118-122)
|
[117]
|
Deng Fang, Chen Jie, Bai Yong-Qiang. Identification of ballistic parameters based on virtual ballistic trajectory data from firing tables. In: Proceedings of the 29th Chinese Control Conference. Beijing, China: IEEE, 2010. 1236-1241 (邓方, 陈杰, 白永强. 基于射表虚拟弹道数据的弹道模型参数辨识. 第29届中国控制会议. 北京, 中国: IEEE, 2010. 1236-1241)
|
[118]
|
Reif K, Guenther S, Yaz E, Unbehauen R. Stochastic stability of the continuous-time extended Kalman filter. IEE Proceedings Control Theory and Applications, 2000, 147(1): 45 -52
|
[119]
|
Reif K, Guenther S, Yaz E, Unbehauen R. Stochastic stability of the discrete-time extended Kalman filter. IEEE Transactions on Automatic Control, 1999, 44(4): 714-728
|
[120]
|
Norgaard M, Poulsen N K, Ravn O. New developments in state estimation for nonlinear systems. Automatica, 2000, 36(11): 1627-1638
|
[121]
|
Bierman G J. Measurement updating using the U-D factorization. Automatica, 1976, 12(4): 375-382
|
[122]
|
Arasaratnam I, Haykin S. Square-root quadrature Kalman filtering. IEEE Transactions on Signal Processing, 2008, 56(6): 2589-2593
|
[123]
|
Schei T S. A finite-difference method for linearization in nonlinear estimation algorithms. Automatica, 1997, 33(11): 2053-2058
|
[124]
|
Zhou Dong-Hua, Xi Yu-Geng, Zhang Zhong-Jun. A suboptimal multiple fading extended Kalman filter. Acta Automatica Sinica, 1991, 17(6): 689-695 (周东华, 席裕庚, 张钟俊. 一种带多重次优渐消因子的扩展卡尔曼滤波器. 自动化学报, 1991, 17(6): 689-695)
|
[125]
|
Chen Jie, Deng Fang, Chen Wen-Jie, Ma Tao. Parameter identification of nonlinear system and its application based on strong tracking filter and wavelet transform. Control Theory and Applications, 2010, 27(6): 738-744 (陈杰, 邓方, 陈文颉, 马韬. 基于强跟踪滤波器及小波变换的非线性系统参数辨识及应用. 控制理论与应用, 2010, 27(6): 738-744)
|
[126]
|
Gordon N J, Salmond D J, Smith A F. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings F (Radar and Signal Processing), 1993, 140(2): 107-113
|
[127]
|
Arulampalam M S, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188
|
[128]
|
Julier S J, Uhlmann J K, Durrant-Whyte H F. A new approach for filtering nonlinear systems. In: Proceedings of the 1995 American Control Conference. Seattle, WA, USA: American Automatic Control Council, 1995. 1628-1632
|
[129]
|
Van der Merwe R. Sigma-point Kalman Filters for Probabilistic Inference in Dynamic State-space Models [Ph.D. dissertation], Oregon Health and Sciences University, USA, 2004
|
[130]
|
Sarkka S. On unscented Kalman filtering for state estimation of continuous-time nonlinear systems. IEEE Transactions on Automatic Control, 2007, 52(9): 1631-1641
|
[131]
|
Wan E A, Van der Merwe R. The unscented Kalman filter for nonlinear estimation. In: Proceedings of the 2000 IEEE Adaptive Systems for Signal Processing, Communications, and Control Symposium. Lake Louise, Alta., Canada: IEEE, 2000. 153-158
|
[132]
|
VanDyke M C, Schwartz J L, Hall C D. Unscented Kalman filtering for spacecraft attitude state and parameter estimation. Advances in the Astronautical Sciences, 2005, 119(Sup): 217-228
|
[133]
|
Julier S J, Uhlmann J K. Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations. In: Proceedings of the 2002 American Control Conference. Anchorage, AK, USA: IEEE, 2002. 887- 892
|
[134]
|
Holmes S, Klein G, Murray D W. A square root unscented Kalman filter for visual monoSLAM. In: Proceedings of the 2008 IEEE International Conference on Robotics and Automation. Pasadena, CA, USA: IEEE, 2008. 3710-3716
|
[135]
|
Deng Zhi-Hong, Yan Li-Ping, Fu Meng-Yin. Multirate multisensor data fusion based on missing measurements. Systems Engineering and Electronics, 2010, 32(5): 886-890 (邓志红, 闫莉萍, 付梦印. 基于不完全观测数据的多速率多传感器数据融合. 系统工程与电子技术, 2010, 32(5): 886-890)
|
[136]
|
Zhao Wen-Ce, Pan Jian-Ping, Chen Wei-Li. The processing method of incomplete instrumentation data based on consideration of trajectory dynamic characteristics. Journal of Spacecraft TT C Technology, 2006, 25(6): 64-68 (赵文策, 潘建平, 陈伟利. 基于弹道动力特性考虑的不完全测量数据处理方法. 飞行器测控学报, 2006, 25(6): 64-68)
|
[137]
|
Wang Yuan-Yuan, Zhang Jun, Zhu Yan-Bo, Lin Xi. Asynchronous multi-rate sensor information fusion algorithm based on missing measurements. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2009, 37(S1): 271-274 (王媛媛, 张军, 朱衍波, 林熙. 异步多速率传感器不完全观测信息融合算法. 华中科技大学学报 (自然科学版), 2009, 37(S1): 271- 274)
|
[138]
|
Wang Z D, Shen B, Liu X H. H filtering with randomly occurring sensor saturations and missing measurements. Automatica, 2012, 48(3): 556-562
|
[139]
|
Liang H Y, Zhou T. Robust state estimation for uncertain discrete-time stochastic systems with missing measurements. Automatica, 2011, 47(7): 1520-1524
|
[140]
|
Ma L F, Wang Z D, Hu J, Bo Y M, Guo Z. Robust variance-constrained filtering for a class of nonlinear stochastic systems with missing measurements. Signal Processing, 2010, 90(6): 2060-2071
|
[141]
|
Meng J, Egerstedt M. Distributed coordination control of multiagent systems while preserving connectedness. IEEE Transactions on Robotics, 2007, 23(4): 693-703
|
[142]
|
Zavlanos M M, Pappas G J. Potential fields for maintaining connectivity of mobile networks. IEEE Transactions on Robotics, 2007, 23(4): 812-816
|
[143]
|
Zavlanos M M, Jadbabaie A, Pappas G J. Flocking while preserving network connectivity. In: Proceedings of the 46th IEEE Conference on Decision and Control. New Orleans, LA, USA: IEEE, 2007. 2919-2923
|
[144]
|
Spanos D P, Murray R M. Motion planning with wireless network constraints. In: Proceedings of the 2005 American Control Conference. Portland, USA: IEEE, 2005. 87-92
|
[145]
|
Pereira G A S, Kumar V, Campos M F M. Closed loop motion planning of cooperating mobile robots using graph connectivity. Robotics and Autonomous Systems, 2008, 56(4): 373-384
|
[146]
|
Notarstefano G, Savla K, Bullo F, Jadbabaie A. Maintaining limited-range connectivity among second-order agents. In: Proceedings of the 2006 American Control Conference. Minneapolis, MN, USA: IEEE, 2006. 2124-2129
|
[147]
|
Zavlanos M M, Tahbaz-Salehi A, Jadbabaie A, Pappas G J. Distributed topology control of dynamic networks. In: Proceedings of the 2008 American Control Conference. Seattle, WA: IEEE, 2008. 2660-2665
|
[148]
|
Schuresko M, Corts J. Distributed motion constraints for algebraic connectivity of robotic networks. Journal of Intelligent and Robotic Systems, 2009, 56(1-2): 99-126
|
[149]
|
Mesbahi M. On state-dependent dynamic graphs and their controllability properties. IEEE Transactions on Automatic Control, 2005, 50(3): 387-392
|
[150]
|
Yoonsoo K, Mesbahi M. On maximizing the second smallest eigenvalue of a state-dependent graph Laplacian. IEEE Transactions on Automatic Control, 2006, 51(1): 116-120
|
[151]
|
Xiao L, Boyd S. Fast linear iterations for distributed averaging. Systems and Control Letters, 2004, 53(1): 65-78
|
[152]
|
Corts J, Martinez S, Bullo F. Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions. IEEE Transactions on Automatic Control, 2006, 51(8): 1289-1298
|
[153]
|
Schuresko M D, Corts J. Safe graph rearrangements for distributed connectivity of robotic networks. In: Proceedings of the 46th IEEE Conference on Decision and Control. New Orleans, LA: IEEE, 2007. 4602-4607
|
[154]
|
Gustavi T, Dimarogonas D V, Egerstedt M, Hu X M. Sufficient conditions for connectivity maintenance and rendezvous in leader-follower networks. Automatica, 2010, 46(1): 133-139
|
[155]
|
Su H S, Wang X F, Chen G R. A connectivity-preserving flocking algorithm for multi-agent systems based only on position measurements. International Journal of Control, 2009, 82(7): 1334-1343
|
[156]
|
Liu Zhi-Xin, Guo Lei. Connectivity and synchronization of multi-agent systems. In: Proceedings of the 25th Chinese Control Conference. Harbin, China: IEEE, 2006. 373-378 (刘志新, 郭雷. 多个体系统的连通与同步. 第25届中国控制会议. 哈尔滨,中国: IEEE, 2006. 373-378)
|
[157]
|
Li X L, Xi Y G. Distributed cooperative coverage and connectivity maintenance for mobile sensing devices. In: Proceedings of the 48th IEEE Conference on Decision and Control. Shanghai, China: IEEE, 2009. 7891-7896
|
[158]
|
Chen Shi-Ming, Fang Hua-Jing. Modeling and stability analysis of large-scale intelligent swarm. Control and Decision, 2005, 20(5): 490-494 (陈世明, 方华京. 大规模智能群体的建模及稳定性分析. 控制与决策, 2005,20(5): 490-494)
|
[159]
|
Mao Y T, Dou L H, Fang H, Liu H G. Distributed motion coordination for multi-agent systems with connectivity maintenance using backbone-based networks. In: Proceedings of the 18th IFAC World Congress. Milano, Italy: IFAC, 2011. 13588-13593
|
[160]
|
Yamaguchi H. A distributed motion coordination strategy for multiple nonholonomic mobile robots in cooperative hunting operations. Robotics and Autonomous Systems, 2003, 43(4): 257-282
|
[161]
|
Tanner H G, Jadbaaie A, Pappas G J. Flocking in teams of nonholonomic agents. In: Proceedings of the 2003 Block Island Workshop on Cooperative Control. Block Island, RI, USA: Springer-Verlag, 2002. 229-239
|
[162]
|
Chang D E, Marsden J E. Gyroscopic forces and collision avoidance with convex obstacles. New Trends in Nonlinear Dynamics and Control and Their Applications, 2004, 295(1): 145-159
|
[163]
|
Olfati-Saber R. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Transactions on Automatic Control, 2006, 51(3): 401-420
|
[164]
|
Mao Y T, Dou L H, Fang H, Liu H G, Cao H. Connectivity-preserving flocking of multi-agent systems with application to wheeled mobile robots. In: Proceedings of the 29th Chinese Control Conference. Beijing, China: IEEE, 2010. 4494 -4500
|
[165]
|
Waydo S, Murray R M. Vehicle motion planning using stream functions. In: Proceedings of the 2003 IEEE International Conference on Robotics and Automation. Taipei, China: IEEE, 2003. 2484-2491
|
[166]
|
Sullivan J, Waydo S, Campbell M. Using stream functions for complex behavior and path generation. In: Proceedings of the 2003 AIAA Guidance, Navigation, and Control Conference. Austin, Texas: AIAA, 2003. 3-5
|
[167]
|
Daily R, Bevly D M. Harmonic potential field path planning for high speed vehicles. In: Proceedings of the 2008 American Control Conference. Seattle, Washington: IEEE, 2008. 4609-4614
|
[168]
|
Lu Jun, Guan Zhi-Hong, Wang Hua. Multiple mobile robots swarming control model based on stream function. Robot, 2006, 28(3): 265-268, 274 (卢骏, 关治洪, 王华. 基于流函数的多移动机器人Swarming控制模型.机器人, 2006, 28(3): 265-268, 274)
|
[169]
|
Guo Teng-Fei, Wang Hong-Lun, Liang Xiao. Path planning based on stream function method for UAV. Tactical Missile Technology, 2011, (5): 27-32 (郭腾飞, 王宏伦, 梁宵. 基于流函数法的无人机航路规划. 战术导弹技术,2011, (5): 27-32)
|
[170]
|
Cao Meng-Lei, Wang Hong-Lun, Liang Xiao. Route planning for UAVs using improved stream function method. Electronics Optics and Control, 2012, 19(2): 1-4, 16 (曹梦磊, 王宏伦, 梁宵. 采用改进流函数法的无人机航路规划. 电光与控制,2012, 19(2): 1-4, 16)
|
[171]
|
Wang Q, Fang H, Chen J, Mao Y T, Dou L H. Flocking with obstacle avoidance and connectivity maintenance in multi-agent systems. In: Proceedings of the 51st IEEE Conference on Decision and Control. Hawaii, USA: IEEE, 2012. 4009- 4014
|
[172]
|
Yao B. High performance adaptive robust control of nonlinear systems: a general framework and new schemes. In: Proceedings of the 36th IEEE Conference on Decision and Control. New York, USA: IEEE, 1997. 2489-2494
|
[173]
|
Shahnazi R, Akbarzadeh-T M R. PI adaptive fuzzy control with large and fast disturbance rejection for a class of uncertain nonlinear systems. IEEE Transactions on Fuzzy Systems, 2008, 16(1): 187-197
|
[174]
|
Armstrong-Helouvry B. Stick slip and control in low-speed motion. IEEE Transactions on Automatic Control, 1993, 38(10): 1483-1496
|
[175]
|
Ren B B, Ge S S, Su C Y, Tong H L. Adaptive neural control for a class of uncertain nonlinear systems in pure-feedback form with hysteresis input. IEEE Transactions on Systems, Man, and Cybernetics -- Part B: Cybernetics, 2009, 39(2): 431-443
|
[176]
|
Zhou J, Meng J E, Zurada J M. Adaptive neural network control of uncertain nonlinear systems with nonsmooth actuator nonlinearities. Neurocomputing, 2007, 70(4-6): 1062-1070
|
[177]
|
Jang J O. Neural network saturation compensation for dc motor systems. IEEE Transactions on Industrial Electronics, 2007, 54(3): 1763-1767
|
[178]
|
Leonessa A, Haddad W M, Hayakawa T, Morel Y. Adaptive control for nonlinear uncertain systems with actuator amplitude and rate saturation constraints. International Journal of Adaptive Control and Signal Processing, 2009, 23(1): 73 -96
|
[179]
|
Boiko I, Fridman L, Pisano A, Usai E. Analysis of chattering in systems with second-order sliding modes. IEEE Transactions on Automatic Control, 2007, 52(11): 2085-2102
|
[180]
|
Khalil H K. Nonlinear Systems (Third edition). Beijing: Publishing House of Electronics Industry, 2002
|
[181]
|
van der Schaft A, Schumacher H. An Introduction to Hybrid Dynamical Systems. London: Springer-Verlag, 2000
|
[182]
|
Bacciotti A, Rosier L. Liapunov Functions and Stability in Control Theory (Second edition). Berlin Heidelberg: Springer, 2005
|
[183]
|
Krstic M, Kanellakopoulos I, Kokotovic P. Nonlinear and Adaptive Control Design. New York: John Wiley, 1995
|
[184]
|
Yao B, Tomizuka M. Adaptive robust control of MIMO nonlinear systems in semi-strict feedback forms. Automatica, 2001, 37(9): 1305-1321
|
[185]
|
Yao B, Tomizuka M. Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form. Automatica, 1997, 33(5): 893-900
|
[186]
|
Wang D, Huang J. Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Transactions on Neural Networks, 2005, 16(1): 195-202
|
[187]
|
Yang Z J, Nagai T, Kanae S, Wada K. Dynamic surface control approach to adaptive robust control of nonlinear systems in semi-strict feedback form. International Journal of Systems Science, 2007, 38(9): 709-724
|
[188]
|
Yao B, Xu L. Output feedback adaptive robust control of uncertain linear systems with disturbances. Journal of Dynamic Systems, Measurement, and Control, 2006, 128(4): 938-945
|
[189]
|
Yao B, Palmer A. Indirect adaptive robust control of SISO nonlinear systems in semi-strict feedback forms. In: Proceeding of the 15th IFAC Triennial World Congress. Barcelona, Spain: IFAC, 2002. 1050-1056
|
[190]
|
Yao B. Integrated direct/indirect adaptive robust control of SISO nonlinear systems in semi-strict feedback form. In: Proceedings of the 2003 American Control Conference. Piscataway, NJ, USA: IEEE, 2003. 3020-3025
|
[191]
|
Zhang G Z, Chen J, Li Z P. Adaptive robust control for servo mechanisms with partially unknown states via dynamic surface control approach. IEEE Transactions on Control Systems Technology, 2010, 18(3): 723-731
|
[192]
|
Karsenti L, Lamnabhi-Lagarrigue F, Bastin G. Adaptive control of nonlinear systems with nonlinear parameterization. System and Control Letters, 1996, 27(2): 87-97
|
[193]
|
Kojić A, Annaswamy A M. Adaptive control of nonlinearly parameterized systems with a triangular structure. Automatica, 2002, 38(1): 115-123
|
[194]
|
Yokoi K, Hung N V Q, Tuan H D, Hosoe S. Adaptive control design for nonlinearly parameterized systems with a triangular structure. Asian Journal of Control, 2007, 9(2): 121-132
|
[195]
|
Hung N V Q, Tuan H D, Narikiyo T, Apkarian P. Adaptive control for nonlinearly parameterized uncertainties in robot manipulators. IEEE Transactions on Control Systems Technology, 2008, 16(3): 458-468
|
[196]
|
Qu Z H, Hull R A, Wang J. Globally stabilizing adaptive control design for nonlinearly-parameterized systems. IEEE Transactions on Automatic Control, 2006, 51(6): 1073- 1079
|
[197]
|
Liu X B, Ortega R, Su H Y, Chu J. Immersion and invariance adaptive control of nonlinearly parameterized nonlinear systems. IEEE Transactions on Automatic Control, 2010, 55(9): 2209-2221
|
[198]
|
Li Z, Chen J, Zhang G, Gan M G. Adaptive robust control for DC motors with input saturation. IET Control Theory and Applications, 2011, 5(16): 1895-1905
|
[199]
|
Wu J L. Stabilizing controllers design for switched nonlinear systems in strict-feedback form. Automatica, 2009, 45(4): 1092-1096
|
[200]
|
Han T T, Ge S S, Lee T H. Adaptive neural control for a class of switched nonlinear systems. Systems and Control Letters, 2009, 58(2): 109-118
|
[201]
|
Zhang G Z, Chen J, Li Z P. Identifier-based adaptive robust control for servomechanisms with improved transient performance. IEEE Transactions on Industrial Electronics, 2010, 57(7): 2536-2547
|