2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于协方差指标预测的MPC实时性能监控

田学民 史亚杰 曹玉苹

田学民, 史亚杰, 曹玉苹. 基于协方差指标预测的MPC实时性能监控. 自动化学报, 2013, 39(5): 658-663. doi: 10.3724/SP.J.1004.2013.00658
引用本文: 田学民, 史亚杰, 曹玉苹. 基于协方差指标预测的MPC实时性能监控. 自动化学报, 2013, 39(5): 658-663. doi: 10.3724/SP.J.1004.2013.00658
TIAN Xue-Min, SHI Ya-Jie, CAO Yu-Ping. Real-time Performance Monitoring of MPC Based on Covariance Index Prediction. ACTA AUTOMATICA SINICA, 2013, 39(5): 658-663. doi: 10.3724/SP.J.1004.2013.00658
Citation: TIAN Xue-Min, SHI Ya-Jie, CAO Yu-Ping. Real-time Performance Monitoring of MPC Based on Covariance Index Prediction. ACTA AUTOMATICA SINICA, 2013, 39(5): 658-663. doi: 10.3724/SP.J.1004.2013.00658

基于协方差指标预测的MPC实时性能监控

doi: 10.3724/SP.J.1004.2013.00658
详细信息
    通讯作者:

    田学民

Real-time Performance Monitoring of MPC Based on Covariance Index Prediction

  • 摘要: 为利用过程数据实时监控模型预测控制(Model predictive control, MPC)的性能, 提出一种基于协方差预测残差的性能监控方法.首先在分析模型预测控制器优 化函数和控制结构的基础上, 构造包含预测误差、控制量和过程输出的监控变量集, 然后利用滑动时间窗口建立基于协方差的实时性能评价 指标.针对协方差指标缺少控制限的问题, 建立实时协方差指标的时间序列模型, 根据协方差指标的预测残差检测模型预测控制性能下降.进 一步利用基于数据集相似度的性能诊断方法确定性能恶化源.最后通过Wood-Berry二元精馏塔上的仿真研究验证了所提方法的有效性.
  • [1] Li Ning, Li Shao-Yuang, Xi Yu-Geng. Multiple model predictive control for MIMO systems. Acta Automatica Sinica, 2003, 29(4): 516-523(李柠, 李少远, 席裕庚. MIMO系统的多模型预测控制. 自动化学报, 2003, 29(4): 516-523)[2] Qin S J, Badgwell T A. A survey of industrial model predictive control technology. Control Engineering Practice, 2003, 11(7): 733-764[3] Darby M L, Nikolaou M. MPC: current practice and challenges. Control Engineering Practice, 2012, 20(4): 328-342[4] Jelali M. An overview of control performance assessment technology and industrial applications. Control Engineering Practice, 2006, 14(5): 441-466[5] Harris T J. Assessment of control loop performance. The Canadian Journal of Chemical Engineering, 1989, 67(5): 856 -861[6] Harris T J, Boudreau F, Macgregor J F. Performance assessment of multivariable feedback controllers. Automatica, 1996, 32(11): 1505-1518[7] Harris T J, Seppala C T, Desborough L D. A review of performance monitoring and assessment techniques for univariate and multivariate control systems. Journal of Process Control, 1999, 9(1): 1-17[8] Huang B, Shah S L, Fujii H. The unitary interactor matrix and its estimation using closed-loop data. Journal of Process Control, 1997, 7(3): 195-207[9] Huang B, Shah S L, Kwok K Y. Good, bad or optimal? Performance assessment of multivariable processes. Automatica, 1997, 33(6): 1175-1183[10] Huang B, Shah S L. Performance Assessment of Control Loops: Theory and Applications. London: Springer-Verlag, 1999. 19-36[11] Grimble M J. Controller performance benchmarking and tuning using generalised minimum variance control. Automatica, 2002, 38(12): 2111-2119[12] Zhao Y, Su H Y, Chu J, Gu Y. Multivariable control performance assessment based on generalized minimum variance benchmark. Chinese Journal of Chemical Engineering, 2010, 18(1): 86-94[13] Huang B, Kadali R. Performance assessment with LQG-benchmark from closed-loop data. Control and Information Sciences, 2008, 374: 213-227[14] Zhao C, Zhao Y, Su H Y, Huang B. Economic performance assessment of advanced process control with LQG benchmarking. Journal of Process Control, 2009, 19(4): 557-569[15] Liu C Y, Huang B, Wang Q L. Control performance assessment subject to multi-objective user-specified performance characteristics. IEEE Transactions on Control Systems Technology, 2011, 19(3): 682-691[16] Yuan Q L, Lennox B, McEwan M. Analysis of multivariable control performance assessment techniques. Journal of Process Control, 2009, 19(5): 751-760[17] Jiang H L, Shah S L, Huang B, Wilson B, Patwardhan R, Szeto F. Model analysis and performance analysis of two industrial MPCs. Control Engineering Practice, 2012, 20(3): 219-235[18] Schfer J, Cinar A. Multivariable MPC system performance assessment, monitoring, and diagnosis. Journal of Process Control, 2004, 14(2): 113-129[19] Qin S J, Yu J. Recent developments in multivariable controller performance monitoring. Journal of Process Control, 2007, 17(3): 221-227[20] Yu J, Qin S J. Statistical MIMO controller performance monitoring, Part I: Data-driven covariance benchmark. Journal of Process Control, 2008, 18(3-4): 277-296[21] Yu J, Qin S J. Statistical MIMO controller performance monitoring, Part II: Performance diagnosis. Journal of Process Control, 2008, 18(3-4): 297-319[22] Zhang Q, Li S Y. Performance monitoring and diagnosis of multivariable model predictive control using statistical analysis. Chinese Journal of Chemical Engineering, 2006, 14(2): 207-215[23] AlGhazzawi A, Lennox B. Model predictive control monitoring using multivariate statistics. Journal of Process Control, 2009, 19(2): 314-327[24] Zhang Guang-Ming, Li Ning, Li Shao-Yuan. A data-driven approach for model predictive control performance monitoring. Journal of Shanghai Jiaotong University, 2011, 45(8): 1113-1118(张光明, 李柠, 李少远. 一种数据驱动的预测控制器性能监控方法. 上海交通大学学报, 2011, 45(8): 1113-1118)[25] Tian X M, Chen G Q, Chen S. A data-based approach for multivariate model predictive control performance monitoring. Neurocomputing, 2011, 74(4): 588-597[26] Tian X M, Chen G Q, Chen S, Cao Y P. Performance monitoring of MPC based on dynamic principal component analysis. In: Proceedings of the 18th IFAC World Congress. Milano, Italy: IFAC, 2011. 13139-13144[27] Kano M, Hasebe S, Hashimoto I, Ohno H. Statistical process monitoring based on dissimilarity of process data. AIChE Journal, 2002, 48(6): 1231-1240[28] Loquasto F, Seborg D E. Monitoring model predictive control systems using pattern classification and neural networks. Industrial and Engineering Chemistry Research, 2003, 42(20): 4689-4701
  • 加载中
计量
  • 文章访问数:  1465
  • HTML全文浏览量:  37
  • PDF下载量:  1205
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-15
  • 修回日期:  2012-11-29
  • 刊出日期:  2013-05-20

目录

    /

    返回文章
    返回