2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双馈风力发电机非线性模型预测控制

孔小兵 刘向杰

孔小兵, 刘向杰. 双馈风力发电机非线性模型预测控制. 自动化学报, 2013, 39(5): 636-643. doi: 10.3724/SP.J.1004.2013.00636
引用本文: 孔小兵, 刘向杰. 双馈风力发电机非线性模型预测控制. 自动化学报, 2013, 39(5): 636-643. doi: 10.3724/SP.J.1004.2013.00636
KONG Xiao-Bing, LIU Xiang-Jie. Nonlinear Model Predictive Control for DFIG-based Wind Power Generation. ACTA AUTOMATICA SINICA, 2013, 39(5): 636-643. doi: 10.3724/SP.J.1004.2013.00636
Citation: KONG Xiao-Bing, LIU Xiang-Jie. Nonlinear Model Predictive Control for DFIG-based Wind Power Generation. ACTA AUTOMATICA SINICA, 2013, 39(5): 636-643. doi: 10.3724/SP.J.1004.2013.00636

双馈风力发电机非线性模型预测控制

doi: 10.3724/SP.J.1004.2013.00636
详细信息
    通讯作者:

    刘向杰

Nonlinear Model Predictive Control for DFIG-based Wind Power Generation

  • 摘要: 在现代风力发电厂中, 需对双馈式风力发电机(Doubly fed induction generator, DFIG)进行有效控制来确保高效率和高负荷跟踪能力. 风力发电厂包含很多不确定因素和非线性因素, 传统的线性控制器往往难以奏效. 本文针对双馈式风力发电机的功率控制提出了一种非线性模型预测控制方法. 文中的目标函数考虑了现实约束下的经济因素和设定值跟踪能力, 同时降低机组磨损和机械疲劳. 预测值可基于输入输出反馈线性化(Input-output feedback linearization, IOFL)策略来计算. 仿真实验结果验证了所构造的非线性模型预测控制器的有效性.
  • [1] Shi Hong-Yu, Feng Yong. High-order terminal sliding mode flux observer for induction motors. Acta Automatica Sinica, 2012, 38(2): 288-294 (史宏宇, 冯勇. 感应电机高阶终端滑模磁链观测器的研究. 自动化学报, 2012, 38(2): 288-294)[2] Liu Zhao-Hua, Zhang Jing, Li Xiao-Hua, Zhang Ying-Jie. Immune co-evolution particle swarm optimization for permanent magnet synchronous motor parameter identification. Acta Automatica Sinica, 2012, 38(10): 1698-1708 (刘朝华, 章兢, 李小花, 张英杰. 免疫协同微粒群进化算法的永磁同步电机多参数辨识模型方法. 自动化学报, 2012, 38(10): 1698-1708)[3] da Costa J P, Pinheiro H, Degner T, Arnold G. Robust controller for DFIGs of grid-connected wind turbines. IEEE Transactions on Industrial Electronics, 2011, 58(9): 4023-4038[4] Jabr H M, Lu D Y, Kar N C. Design and implementation of neuro-fuzzy vector control for wind-driven doubly-fed induction generator. IEEE Transactions on Sustainable Energy, 2011, 2(4): 404-413[5] Xu L, Zhi D W, Williams B W. Predictive current control of doubly fed induction generators. IEEE Transactions on Industrial Electronics, 2009, 56(10): 4143-4153[6] Liu X J, Guan P, Chan C W. Nonlinear multivariable power plant coordinate control by constrained predictive scheme. IEEE Transactions on Control Systems Technology, 2010, 18(5): 1116-1125[7] Liu X J, Chan C W. Neuro-fuzzy generalized predictive control of boiler steam temperature. IEEE Transactions on Energy Conversion, 2006, 21(4): 900-908[8] Liu Xiang-Jie, Liu Ji-Zhen. Constrained power plant coordinated predictive control using neurofuzzy model. Acta Automatica Sinica, 2006, 32(5): 786-790 (刘向杰, 刘吉臻. 基于模糊神经模型的电厂协调预测控制. 自动化学报, 2006, 32(5): 785-790)[9] Abad G, Rodriguez M A, Poza J. Three-level npc converter-based predictive direct power control of the doubly fed induction machine at low constant switching frequency. IEEE Transactions on Industrial Electronics, 2008, 55(12): 4417-4429[10] Sguarezi Filho A J, de Oliveira Filho M E, Ruppert Filho E. A predictive power control for wind energy. IEEE Transactions on Sustainable Energy, 2011, 2(1): 97-105[11] Hu Yue-Ming. The Theory and Applications of Nonlinear Control Systems. Beijing: National Defence Industry Press, 2005. 87-91(胡跃明. 非线性控制系统理论与应用. 北京: 国防工业出版社, 2005. 87-91)[12] Kong Xiao-Bing, Liu Xiang-Jie. Continuoustime nonlinear model predictive control with input/output linearization. Control Theory and Applications, 2012, 29(2): 217-224 (孔小兵, 刘向杰. 基于输入输出线性化的连续系统非线性模型预测控制. 控制理论与应用, 2012, 29(2): 217-224)[13] Wang L P. Model Predictive Control System Design and Implementation Using MATLAB. New York: Springer, 2009. 22-26
  • 加载中
计量
  • 文章访问数:  2070
  • HTML全文浏览量:  107
  • PDF下载量:  2312
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-15
  • 修回日期:  2012-12-21
  • 刊出日期:  2013-05-20

目录

    /

    返回文章
    返回