[1]
|
Sun Wei, Wang Bo. A survey of facial expression recognition. Computer Knowledge and Technology, 2012, 8(1): 106-108(孙蔚, 王波. 人脸表情识别综述. 电脑知识与技术, 2012, 8(1): 106-108)[2] Zhao Xu-Dong, Liu Peng, Tang Xiang-Long, Liu Jia-Feng. Background modeling adaptive to outdoor illumination variation and foreground detection approach. Acta Automatica Sinica, 2011, 37(8): 915-922(赵旭东, 刘鹏, 唐降龙, 刘家锋. 一种适应户外光照变化的背景建模及目标检测方法. 自动化学报, 2011,37(8): 915-922)[3] Hong J W, Song K T. Facial expression recognition under illumination variation. In: Proceedings of the 2007 IEEE Workshop on Advanced Robotics and Its Social Impacts. Taipei, China: IEEE, 2007. 1-6[4] Li H, Buenaposada J M, Baumela L. Real-time facial expression recognition with illumination-corrected image sequences. In: Proceedings of the 8th IEEE International Conference on Automatic Face and Gesture Recognition. Amsterdam, Netherlands: IEEE, 2008. 1-6[5] Li Xiao-Li, Da Fei-Peng. A rapid method for 3D face recognition based on rejection algorithm. Acta Automatica Sinica, 2010, 36(1): 153-158(李晓莉, 达飞鹏. 基于排除算法的快速三维人脸识别方法. 自动化学报, 2010, 36(1): 153-158)[6] Wang Zhi-Hong, Yuan Heng, Jiang Wen-Tao. A face recognition algorithm based on composite gradient vector. Acta Automatica Sinica, 2011, 37(12): 1445-1454(王志宏, 袁姮, 姜文涛. 基于复合梯度向量的人脸识别算法. 自动化学报, 2011, 37(12): 1445-1454)[7] Georghiades A S, Belhumeur P N, Kriegman D J. From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6): 643-660[8] Liu Du-Jin, Sun Shu-Xia, Li Si-Ming. Analysis of illumination treatment methods in face recognition. Computer Systems and Applications, 2011, 20(1): 160-163(刘笃晋, 孙淑霞, 李思明. 人脸识别中光照处理方法的分析. 计算机系统应用, 2011, 20(1): 160-163)[9] Blanz V, Vetter T. Face recognition based on fitting a 3D morphable Model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(9): 1063-1074[10] Shan S G, Gao W, Cao B, Zhao D B. Illumination normalization for robust face recognition against varying illumination conditions. In: Proceedings of the 2003 IEEE International Workshop on Analysis and Modeling of Faces and Gestures. Washington D.C., USA: IEEE Computer Society, 2003. 157-164[11] Wang H T, Li S Z, Wang Y S. Face recognition under varying lighting conditions using self quotient image. In: Proceedings of the 6th IEEE International Conference on Automatic Face and Gesture Recognition. Seoul, Korea: IEEE Computer Society, 2004. 819-824[12] Wang Hai-Tao, Liu Jun, Wang Yang-Sheng. Self-quotient image. Computer Engineering, 2005, 31(18): 178-179(王海涛, 刘俊, 王阳生. 自商图像. 计算机工程, 2005, 31(18): 178-179)[13] Chen T, Yin W, Zhou X S, Comaniciu D, Huang T S. Illumination normalization for face recognition and uneven background correction using total variation based image models. In: Proceedings of the 2005 IEEE International Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA: IEEE, 2005. 532-539[14] Zhang Yi, Zhang Gui-Lin. An illumination invariant face recognition algorithm based on total variation model. Journal of Image and Graphics, 2009, 12(2): 208-213(张熠, 张桂林. 基于总变分模型的光照不变人脸识别算法. 中国图形图像学报, 2009, 12(2): 208-213)[15] Tenenbaum J B, Freeman W T. Separating style and content with bilinear models. Neural Computation, 2000, 12(6): 1247-1283[16] Abboud B, Davoine F. Appearance factorization based facial expression recognition and synthesis. In: Proceedings of the 17th International Conference on Pattern Recognition. Cambridge, UK: IEEE Computer Society, 2004. 163-166[17] Du Y Z, Lin X Y. Multi-view face image synthesis using factorization model. In: Proceedings of the 2004 Computer Vision in Human-computer Interaction. Prague, Czech Republic: IEEE, 2004. 200-210[18] Lee H, Kim D. Facial expression transformations for expression-invariant face recognition. In: Proceedings of the 2006 International Symposium on Visual Computing. Lake Tahoe, NV, USA: IEEE, 2006. 323-333[19] Grimes D, Rao R. A bilinear model for sparse coding. In: Proceedings of the 2003 Advance in Neural Information Processing Systems. Vancouver, Canada: IEEE, 2003. 1287-1294[20] Magnus J R, Neudecker H. Matrix Differential Calculus with Applications in Statistics and Econometrics. New York: Wiley Press, 1988[21] Shashua A, Riklin-Raviv T. The quotient image: class-based re-rendering and recognition with varying illumination. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 32(2): 129-139[22] Liu S S, Tian Y T, Wan C. Gabor feature representation method based on block statistics and its application to facial expression recognition. In: Proceedings of the 8th World Congress on Intelligent Control and Automation. Ji’nan, China: IEEE, 2010. 6267-6271[23] Liu Shuai-Shi, Tian Yan-Tao, Wan Chuan. Facial expression recognition method based on Gabor multi-orientation features fusion and block histogram. Acta Automatica Sinica, 2011, 37(12): 1455-1463(刘帅师, 田彦涛, 万川. 基于Gabor多方向特征融合与分块直方图的人脸表情识别方法. 自动化学报, 2011, 37(12): 1455-1463)[24] Wang Y M, Zhang Y Z. The facial expression recognition based on KPCA. In: Proceedings of the 2010 International Conference on Intelligence Control and Information Processing. Dalian, China: IEEE, 2010. 365-368[25] Kim S K, Park Y J, Toh K A, Lee S. SVM-based feature extraction for face recognition. Pattern Recognition, 2010, 43(8): 2871-2881
|