2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

保持基座稳定的双臂空间机器人轨迹规划研究

徐文福 王学谦 薛强 梁斌

徐文福, 王学谦, 薛强, 梁斌. 保持基座稳定的双臂空间机器人轨迹规划研究. 自动化学报, 2013, 39(1): 69-80. doi: 10.3724/SP.J.1004.2013.00069
引用本文: 徐文福, 王学谦, 薛强, 梁斌. 保持基座稳定的双臂空间机器人轨迹规划研究. 自动化学报, 2013, 39(1): 69-80. doi: 10.3724/SP.J.1004.2013.00069
XU Wen-Fu, WANG Xue-Qian, XUE Qiang, LIANG Bin. Study on Trajectory Planning of Dual-arm Space Robot Keeping the Base Stabilized. ACTA AUTOMATICA SINICA, 2013, 39(1): 69-80. doi: 10.3724/SP.J.1004.2013.00069
Citation: XU Wen-Fu, WANG Xue-Qian, XUE Qiang, LIANG Bin. Study on Trajectory Planning of Dual-arm Space Robot Keeping the Base Stabilized. ACTA AUTOMATICA SINICA, 2013, 39(1): 69-80. doi: 10.3724/SP.J.1004.2013.00069

保持基座稳定的双臂空间机器人轨迹规划研究

doi: 10.3724/SP.J.1004.2013.00069
详细信息
    通讯作者:

    徐文福

Study on Trajectory Planning of Dual-arm Space Robot Keeping the Base Stabilized

  • 摘要: 针对双臂空间机器人在轨执行任务中需要利用平衡臂稳定基座的问题, 提出了两种典型应用需求——基座质心位置稳定、基座姿态和质心位置同时稳定的协调规划方法.首 先,提出了“系统质心等效机械臂”的概念并推导其运动学模型,基于此模型的位置级反解规 划平衡臂的运动轨迹,使基座质心位置稳定在期望位置;其次,根据角动量守恒定律确定反作用飞 轮的运动速度,将飞轮与平衡臂的运动相结合,同时稳定基座姿态和质心位置;最后,建立双臂空间机器人系统的多体动力学模型并开展仿真研究.所提出的方法克服了以往基于微分运动学所无法回避的奇异问题,且不对平衡臂的质量特性和安装位置作特殊规定,仿真结果证明了方法的有效性.
  • [1] Boning P, Dubowsky S. A kinematic approach to determining the optimal actuator sensor architecture for space robots. The International Journal of Robotics Research, 2011, 30(9): 1194-1204[2] Xu W F, Liang B, Li B, Xu Y S. A universal on-orbit servicing system used in the geostationary orbit. Advances in Space Research, 2011, 48(1): 95-119[3] Toglia C, Sabatini M, Gasbarri P, Palmerini G B. Optimal target grasping of a flexible space manipulator for a class of objectives. Acta Astronautica, 2011, 68(7-8): 1031-1041[4] Debus T J, Dougherty S P. Overview and performance of the front-end robotics enabling near-term demonstration (FREND) robotic arm. In: Proceedings of the 2009 AIAA Infotech@Aerospace Conference. Seattle, Washington, USA: AIAA, 2009. AIAA-2009-1870[5] Xu Wen-Fu, Li Cheng, Liang Bin, Liu Yu, Qiang Wen-Yi. Coordinated planning and control method of space robot for capturing moving target. Acta Automatica Sinica, 2009, 35(9): 1216-1225(徐文福, 李成, 梁斌, 刘宇, 强文义. 空间机器人捕获运动目标的协调规划与控制方法. 自动化学报, 2009, 35(9): 1216-1225)[6] Ma Bao-Li, Huo Wei. Coordinated motion control of free flying space robot system. Acta Automatica Sinica, 1998, 24(1): 50-55(马保离, 霍伟. 自由飞行空间机器人系统的协调运动控制. 自动化学报, 1998, 24(1): 50-55)[7] Wang H L, Xie Y C. On the recursive adaptive control for free-floating space manipulators. Journal of Intelligent Robotic Systems, 2012, 66(4): 443-461[8] Rastegari R, Moosavian S A A. Multiple impedance control of space free-flying robots via virtual linkages. Acta Astronautica, 2010, 66(5-6): 748-759[9] Tian Zhi-Xiang, Wu Hong-Tao. Dynamic modeling and simulation of closed-loop dual-arm space robots. Journal of South China University of Technology (Natural Science Edition), 2011, 39(8): 42-47, 65(田志祥, 吴洪涛. 闭环双臂空间机器人的动力学建模与仿真. 华南理工大学学报(自然科学版), 2011, 39(8): 42-47, 65)[10] Coleshill E, Oshinowo L, Rembala R, Bina B, Rey D, Sindelar S. Dextre: improving maintenance operations on the international space station. Acta Astronautica, 2009, 64(9-10): 869-874[11] Diftler M A, Mehling J S, Abdallah M E, Radford N A, Bridgwater L B, Sanders A M, Askew R S, Linn D M, Yamokoski J D, Permenter F A, Hargrave B K, Platt R, Savely R T, Ambrose R O. Robonaut 2 --- the first humanoid robot in space. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011. 2178-2183[12] Sabelli E, Akin D L, Carignan C R. Selecting impedance parameters for the ranger 8-DOF dexterous space manipulator. In: Proceedings of the 2007 AIAA Aerospace Conference and Exhibit. Rohnert Park, California, USA: AIAA, 2007. AIAA-2007-2837[13] Chen Zhi-Huang, Chen Li. Compensation control for grasped object of dual-arm space robot with closed-chain based on radial basis function neural network. Journal of Mechanical Engineering, 2011, 47(7): 38-44(陈志煌, 陈力. 闭链双臂空间机器人抓持载荷基于径向基函数神经网络的补偿控制. 机械工程学报, 2011, 47(7): 38-44)[14] Boning P, Dubowsky S. Coordinated control of space robot teams for the on-orbit construction of large flexible space structures. Advanced Robotics, 2010, 24(3): 303-323[15] Wang Cong-Qing, Zhang Cheng-Long. Dynamic control of a free-floating flexible dual-arm space robotic system. Chinese Journal of Mechanical Engineering, 2007, 43(10): 196-200(王从庆, 张承龙. 自由浮动柔性双臂空间机器人系统的动力学控制. 机械工程学报, 2007, 43(10): 196-200)[16] Yoshida K, Kurazume R, Umetani Y. Dual arm coordination in space free-flying robot. In: Proceedings of the 1991 IEEE International Conference on Robotics and Automation. Piscataway, New Jersey, USA: IEEE, 1991. 2516-2521[17] Wang Jing, Liu Liang-Dong. Attitude control of dual-arm space robot using internal control. Journal of Astronautics, 2000, 21(1): 28-35(王景, 刘良栋. 双臂空间机器人利用内部运动的姿态控制. 宇航学报, 2000, 21(1): 28-35)[18] Huang P F, Xu Y S, Liang B. Dynamic balance control of multi-arm free-floating space robots. International Journal of Advanced Robotic Systems, 2005, 2(2): 117-124[19] Agrawal S K, Shirumalla S. Planning motions of a dual-arm free-floating manipulator keeping the base inertially fixed. Mechanism and Machine Theory, 1995, 30(1): 59-70[20] Xu W F, Liu Y, Xu Y S. The coordinated motion planning of a dual-arm space robot for target capturing. Robotica, 2012, 30(5): 755-771[21] Xu Wen-Fu, Liang Bin, Liu Yu, Li Cheng, Qiang Wen-Yi. A novel approach to avoid singularities of PUMA-type manipulators. Acta Automatica Sinica, 2008, 34(6): 670-675(徐文福, 梁斌, 刘宇, 李成, 强文义.一种新的PUMA类型机器人奇异回避算法. 自动化学报, 2008, 34(6): 670-675)[22] Vafa Z, Dubowsky S. The kinematics and dynamics of space manipulators: the virtual manipulator approach. The International Journal of Robotics Research, 1990, 9(4): 3-21
  • 加载中
计量
  • 文章访问数:  2050
  • HTML全文浏览量:  49
  • PDF下载量:  835
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-27
  • 修回日期:  2012-05-04
  • 刊出日期:  2013-01-20

目录

    /

    返回文章
    返回