2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种改进的低成本自适应双三次插值算法及VLSI实现

庞志勇 谭洪舟 陈弟虎

庞志勇, 谭洪舟, 陈弟虎. 一种改进的低成本自适应双三次插值算法及VLSI实现. 自动化学报, 2013, 39(4): 407-417. doi: 10.3724/SP.J.1004.2013.00407
引用本文: 庞志勇, 谭洪舟, 陈弟虎. 一种改进的低成本自适应双三次插值算法及VLSI实现. 自动化学报, 2013, 39(4): 407-417. doi: 10.3724/SP.J.1004.2013.00407
PANG Zhi-Yong, TAN Hong-Zhou, CHEN Di-Hu. An Improved Low-cost Adaptive Bicubic Interpolation Arithmetic and VLSI Implementation. ACTA AUTOMATICA SINICA, 2013, 39(4): 407-417. doi: 10.3724/SP.J.1004.2013.00407
Citation: PANG Zhi-Yong, TAN Hong-Zhou, CHEN Di-Hu. An Improved Low-cost Adaptive Bicubic Interpolation Arithmetic and VLSI Implementation. ACTA AUTOMATICA SINICA, 2013, 39(4): 407-417. doi: 10.3724/SP.J.1004.2013.00407

一种改进的低成本自适应双三次插值算法及VLSI实现

doi: 10.3724/SP.J.1004.2013.00407
详细信息
    通讯作者:

    谭洪舟

An Improved Low-cost Adaptive Bicubic Interpolation Arithmetic and VLSI Implementation

  • 摘要: 提出了一种新型图像缩放算法, 由自适应锐化滤波器和双三次插值组成.锐化滤波器减轻了双三次插值产生的模糊效应, 自适应技术进一步提升了图像缩放质量. 为了减少运算量, 提出前置滤波和后置滤波技术.与其他几种算法相比较, 本文的算法在主观和客观评价方面都明显胜出. 为了实现实时低成本设计, 提出了一种该算法的流水线超大规模集成电路 (Very large scale integration, VLSI)架构. 在现场可编程逻辑器件 (Field-programmable gate array, FPGA)上实现, 占用695个逻辑单元(Logic elements, LEs), 时钟频率达到165MHz, 减少了36.8%逻辑单元, 图像质量平均峰值信噪比 (Peak signal-to-noise ratio, PSNR)提升了1.5dB.
  • [1] Chen S L, Huang H Y, Luo C H. A low-cost high-quality adaptive scalar for real-time multimedia applications. IEEE Transactions on Circuits and Systems for Video Techology, 2011, 21(11): 1600-1611[2] Hwang I, Kang B, Gerard J. High-resolution image scaler using interpolation filter for multimedia video applications. IEEE Transactions on Consumer Electronics, 1997, 43(3): 813-818[3] Doswald D, Hafliger J, Blessing P, Felber N, Niederer P, Fichtner W. A 30-frames/s megapixel real-time CMOS image processor. IEEE Journal of Solid-State Circuits, 2000, 35(11): 1732-1743[4] Lehmann T M, Gonner C, Spitzer K. Addendum: B-spline interpolation in medical image processing. IEEE Transactions on Medical Imaging, 2001, 20(7): 660-665[5] Battiato S, Gallo G, Stanco F. A locally adaptive zooming algorithm for digital images. Image and Vision Computing, 2002, 20(11): 805-812[6] Chen M J, Huang C H, Lee W L. A fast edge-oriented algorithm for image interpolation. Image and Vision Computing, 2005, 23(9): 791-798[7] Shi J Z, Reichenbach S E. Image interpolation by two-dimensional parametric cubic convolution. IEEE Transactions on Image Processing, 2006, 15(7): 1857-1870[8] Chen J L, Chang J Y, Shieh K L. 2-D discrete signal interpolation and its image resampling application using fuzzy rule-based inference. Fuzzy Sets and Systems, 2000, 114(2): 225-238[9] Blu T, Thevenaz P, Unser M. Linear interpolation revitalized. IEEE Transactions on Image Processing, 2004, 13(5): 710-719[10] Meijering E H W, Zuiderveld K J, Viergever M A. Image reconstruction by convolution with symmetrical piecewise nth-order polynomial kernels. IEEE Transactions on Image Processings, 1999, 8(2): 192-201[11] Caselles V, Morel J M, Sbert C. An axiomatic approach to image interpolation. IEEE Transactions on Image Processing, 1998, 7(3): 376-386[12] Jensen K, Anastassiou D. Subpixel edge localization and the interpolation of still images. IEEE Transactions on Image Processing, 1995, 4(3): 285-295[13] Keys R G. Cubic convolution interpolation for digital image processing. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(6): 1153-1160[14] Eadie D, Shevlin F P, Nisbet A. Correction of geometric image distortion using FPGAs. In: Proceedings of SPIE Conference on Optical Metrology, Imaging and Machine Vision. Galway, Ireland, 2002, 4877: 28-37[15] Hudson R D, Lehn D I, Athanas P M. A run-time reconfigurable engine for image interpolation. In: Proceedings of the 1998 IEEE Symposium on FPGAs for Custom Configurable Computing Machines. Napa, California: IEEE, 1998. 88-95[16] Skarabot A, Ramponi G, Buriola L. FPGA architecture for a videowall image processor. In: Proceedings of the 2001 SPIE International Symposium on Electronic Imaging 2001. San Jose, California, 2001[17] Gribbon K T, Johnston C T, Bailey D G. A real-time FPGA implementation of a barrel correction algorithm with bilinear interpolation. In: Proceedings of the 2003 Image and Vision Computing New Zealand. Palmerston North, New Zealand, 2003. 408-413[18] Lin C C, Sheu M H, Liaw C, Chiang H K. Fast first-order polynomials convolution interpolation for real-time digital image reconstruction. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(9): 1260-1264[19] Andrews S, Harris F. Polynomial approximations of interpolants. In: Proceedings of the 33rd Asilomar Conference on Signals, Systems, and Computers. Pacific Grove, CA, USA: IEEE, 1999. 1: 447-451[20] Shezaf N, Abramov-Segal H, Sutskover I, Bar-Sella R. Adaptive low complexity algorithm for image zooming at fractional scaling ratio. In: Proceedings of the 21st IEEE Convention of the Electrical and Electronic Engineers. Tel Aviv, Israel: IEEE, 2000. 253-256[21] Kim H C, Kwon B H, Choi M R. An image interpolator with image improvement for LCD controller. IEEE Transactions on Consumer Electronics, 2001, 47(2): 263-271[22] Lin C C, Sheu M H, Chiang H K, Tsai W K, Wu Z C. Real-time FPGA architecture of extended linear convolution for digital image scaling. In: Proceedings of the 2008 IEEE International Conference on ICECE Technology. Taipei, China: IEEE, 2008. 381-384[23] Lin C C, Sheu M H, Chiang H K, Liaw C, Wu Z C. The efficient VLSI design of BI-CUBIC convolution interpolation for digital image processing. In: Proceedings of the 2008 IEEE International Symposium on Circuits and Systems. Seattle, WA: IEEE, 2008. 480-483[24] Nuno-Maganda M A, Arias-Estrada M O. Real-time FPGA-based architecture for bicubic interpolation: an application for digital image scaling. In: Proceedings of the 2005 IEEE International Conference on Reconfigurable Computing and FPGAs. Puebla City: IEEE, 2005[25] Ridella S, Rovetta S, Zunino R. IAVQ-interval-arithmetic vector quantization for image compression. IEEE Transactions on Circuits and Systems Part II: Analog and Digital Signal Processing, 2000, 47(12): 1378-1390[26] Shi B E, Chua L O. Resistive grid image filtering: input/output analysis via the CNN framework. IEEE Transactions on Circuits and Systems, Part I: Fundamental Theory and Applications, 1992, 39(7): 531-548[27] Schaller S, Wildberger J E, Raupach R, Niethammer M, Klingenbeck-Regn K, Flohr T. Spatial domain filtering for fast modification of the tradeoff between image sharpness and pixel noise in computed tomography. IEEE Transactions on Medical Imaging, 2003, 22(7): 846-853[28] Wang Q, Ward R. A new edge-directed image expansion scheme. In: Proceedings of the 2001 International Conference on Image Processing. Thessaloniki: IEEE, 2001. 3: 899-902[29] Goodman D. Some stability properties of two-dimensional linear shift-invariant digital filters. IEEE Transactions on Circuits and Systems, 1977, 24(4): 201-208[30] Chang H, Aggarwal J K. Design of two-dimensional semicasual recursive filters. IEEE Transactions on Circuits and Systems, 1978, 25(12): 1051-1059
  • 加载中
计量
  • 文章访问数:  1882
  • HTML全文浏览量:  68
  • PDF下载量:  754
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-14
  • 修回日期:  2012-11-06
  • 刊出日期:  2013-04-20

目录

    /

    返回文章
    返回