2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于立体视觉平面单应性的智能车辆可行驶道路边界检测

郭春钊 山部尚孝 三田诚一

郭春钊, 山部尚孝, 三田诚一. 基于立体视觉平面单应性的智能车辆可行驶道路边界检测. 自动化学报, 2013, 39(4): 371-380. doi: 10.3724/SP.J.1004.2013.00371
引用本文: 郭春钊, 山部尚孝, 三田诚一. 基于立体视觉平面单应性的智能车辆可行驶道路边界检测. 自动化学报, 2013, 39(4): 371-380. doi: 10.3724/SP.J.1004.2013.00371
GUO Chun-Zhao, YAMABE Takayuki, MITA Seiichi. Drivable Road Boundary Detection for Intelligent Vehicles Based on Stereovision with Plane-induced Homography. ACTA AUTOMATICA SINICA, 2013, 39(4): 371-380. doi: 10.3724/SP.J.1004.2013.00371
Citation: GUO Chun-Zhao, YAMABE Takayuki, MITA Seiichi. Drivable Road Boundary Detection for Intelligent Vehicles Based on Stereovision with Plane-induced Homography. ACTA AUTOMATICA SINICA, 2013, 39(4): 371-380. doi: 10.3724/SP.J.1004.2013.00371

基于立体视觉平面单应性的智能车辆可行驶道路边界检测

doi: 10.3724/SP.J.1004.2013.00371
详细信息
    通讯作者:

    郭春钊

Drivable Road Boundary Detection for Intelligent Vehicles Based on Stereovision with Plane-induced Homography

  • 摘要: 道路检测是智能车辆及先进驾驶辅助系统(Advanced driver assistance systems, ADAS) 研究的关键问题之一.本文提出了一种基于立体视觉的可行驶道路区域与非道路区域间边界的检测方法. 该方法基于立体视觉平面单应性建立了一个隐马尔科夫模型(Hidden Markov model, HMM).针对该模型,我们应用Viterbi算法,并提出了一种巧妙的状态序列的观测概率函数,以寻找道路/非道路边界的最优状态序列. 实验结果证明了该方法在各种典型且复杂的实际道路场景中的有效性和鲁棒性.
  • [1] Nieto M, Salgado L. Real-time vanishing point estimation in road sequences using adaptive steerable filter banks. In: Proceedings of the 9th International Conference on Advanced Concepts for Intelligent Vision Systems. Berlin, Heidelberg: Springer-Verlag, 2007. 840-848[2] Franke U, Loose H, Knoppel C. Lane recognition on country roads. In: Proceedings of the 2007 IEEE Intelligent Vehicles Symposium. Istanbul, Turkey: IEEE, 2007. 99-104[3] McCall J C, Trivedi M M. Video-based lane estimation and tracking for driver assistance: survey, system, and evaluation. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(1): 20-37[4] Kuhnl T, Kummert F, Fritsch J. Monocular road segmentation using slow feature analysis. In: Proceedings of the 2011 IEEE Intelligent Vehicles Symposium. Baden-Baden, Germany: IEEE, 2011. 800-806[5] Sotelo M A, Rodriguez F J, Magdalena L. Virtuous: vision-based road transportation for unmanned operation on urban-like scenarios. IEEE Transactions on Intelligent Transportation Systems, 2004, 5(2): 69-83[6] Thrun S, Montemerlo M, Dahlkamp H. Stanley: the robot that won the DARPA grand challenge. Journal of Field Robotics, 2006, 23(9): 661-692[7] Lookingbill A, Rogers J, Lieb D, Curry J, Thrun S. Reverse optical flow for self-supervised adaptive autonomous robot navigation. International Journal of Computer Vision, 2007, 74(3): 287-302[8] Darms M, Komar M, Lueke S. Map based road boundary estimation. In: Proceedings of the 2010 IEEE Intelligent Vehicles Symposium. San Diego, CA: IEEE, 2010. 609-614[9] Gupta A, Efros A A, Hebert M. Map based road boundary estimation. In: ECCV. 2010[10] Akbarzadeh A, Frahm J M, Mordohai P, Clipp B, Engels C, Gallup D, Merrell P, Phelps M, Sinha S, Talton B, Wang L, Yang Q, Stewenius H, Yang R, Welch G, Towles H, Nister D, Pollefeys M. Towards urban 3D reconstruction from video. In: Proceedings of the 3rd International Symposium on 3D Data Processing, Visualization, and Transmission. Chapel Hill, NC: IEEE, 2006. 1-8[11] Gallup D, Frahm J M, Pollefeys M. Piecewise planar and non-planar stereo for urban scene reconstruction. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, CA: IEEE, 2010. 1418-1425[12] Kubota S, Nakano T, Okamoto Y. A global optimization algorithm for real-time on-board stereo obstacle detection systems. In: Proceedings of the 2007 IEEE Intelligent Vehicles Symposium. Istanbul, Turkey: IEEE, 2007. 7-12[13] Seki A, Okutomi M. Robust obstacle detection in general road environment based on road extraction and pose estimation. In: Proceedings of the 2006 IEEE Intelligent Vehicles Symposium. Tokyo, Japan: IEEE, 2006. 437-444[14] Guo C, Mita S, McAllester D. Robust road detection and tracking in challenging scenarios based on Markov random fields with unsupervised learning. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(3): 1338-1354[15] Hartley R, Zisserman A. Multiple View Geometry in Computer Vision. Cambridge, UK: Cambridge University Press, 2003[16] Harris C, Stephens M. A combined corner and edge detector. In: Proceedings of the 4th Alvey Vision Conference. Manchester, UK: Organising Committee AVC, 1988. 147-151[17] Gill P E, Murray W. Algorithms for the solution of the nonlinear least-squares problem. SIAM Journal on Numerical Analysis, 1978, 15(5): 977-992[18] Rabiner L R. A tutorial on hidden Markov models and selected applications in speech recognition.[19] D. Scharstei and R. Szeliski, A taxonomy and evaluation of dense two-frame stereo correspondence algorithms, in Int. J. of Compution Vision, 2002, 47(1/2/3): 7-42.
  • 加载中
计量
  • 文章访问数:  2196
  • HTML全文浏览量:  86
  • PDF下载量:  1215
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-13
  • 修回日期:  2012-11-26
  • 刊出日期:  2013-04-20

目录

    /

    返回文章
    返回