2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非匹配不确定高阶非线性系统递阶Terminal滑模控制

蒲明 吴庆宪 姜长生 佃松宜 王宇飞

蒲明, 吴庆宪, 姜长生, 佃松宜, 王宇飞. 非匹配不确定高阶非线性系统递阶Terminal滑模控制. 自动化学报, 2012, 38(11): 1777-1793. doi: 10.3724/SP.J.1004.2012.01777
引用本文: 蒲明, 吴庆宪, 姜长生, 佃松宜, 王宇飞. 非匹配不确定高阶非线性系统递阶Terminal滑模控制. 自动化学报, 2012, 38(11): 1777-1793. doi: 10.3724/SP.J.1004.2012.01777
PU Ming, WU Qing-Xian, JIANG Chang-Sheng, DIAN Song-Yi, WANG Yu-Fei. Recursive Terminal Sliding Mode Control for Higher-order Nonlinear System with Mismatched Uncertainties. ACTA AUTOMATICA SINICA, 2012, 38(11): 1777-1793. doi: 10.3724/SP.J.1004.2012.01777
Citation: PU Ming, WU Qing-Xian, JIANG Chang-Sheng, DIAN Song-Yi, WANG Yu-Fei. Recursive Terminal Sliding Mode Control for Higher-order Nonlinear System with Mismatched Uncertainties. ACTA AUTOMATICA SINICA, 2012, 38(11): 1777-1793. doi: 10.3724/SP.J.1004.2012.01777

非匹配不确定高阶非线性系统递阶Terminal滑模控制

doi: 10.3724/SP.J.1004.2012.01777
详细信息
    通讯作者:

    蒲明

Recursive Terminal Sliding Mode Control for Higher-order Nonlinear System with Mismatched Uncertainties

  • 摘要: 对于高阶非线性系统,首先采用改进的高阶滑模微分器作为间接干扰观测器,获得前n-1个子系统中的非匹配复合干扰的估计值,证明了估计误差可任意小. 为避免代数环,设计了三种方案获得最后一个子系统中非匹配复合干扰的估计值,并证明了估计误差有界. 在此基础上设计递阶Terminal滑模控制器,证明了控制器参数非奇异及结构非奇异,并给出所需条件. 最后,证明了系统稳定,跟踪误差可任意小. 近空间飞行器姿态控制仿真验证了本文结论.
  • [1] Cao W J, Xu J X. Nonlinear integral-type sliding surface for both matched and unmatched uncertain systems. IEEE Transactions on Automatic Control, 2004, 49(8): 1355-1360[2] Fernando C, Leonid F. Analysis and design of integral sliding manifolds for systems with unmatched perturbations. IEEE Transactions on Automatic Control, 2006, 51(5): 853-858[3] Hong S K, Nam Y. Stable fuzzy control system design with pole-placement constraint: an LMI approach. Computers in Industry, 2003, 51(1): 1-11[4] Man Z H, Paplinski A P, Wu H R. A robust MIMO terminal sliding mode control scheme for rigid robot manipulators. IEEE Transactions on Automatic Control, 1994, 39(12): 2464-2469[5] Binoo K J, Ray G. Trajectory tracking of a two-link robot manipulator: a terminal attractor approach. In: Proceedings of the 6th International Conference on Electrical and Computer Engineering. Dhaka, Bangladesh: IEEE, 2010. 255-258[6] Feng Y, Yu X H, Man Z H. Non-singular terminal sliding mode control of rigid manipulators. Automatica, 2002, 38(12): 2159-2167[7] Feng Yong, Bao Cheng, Yu Xing-Huo. Design method of non-singular terminal sliding mode control systems. Control and Decision, 2002, 17(2): 194-198(冯勇, 鲍晟, 余星火. 非奇异终端滑模控制系统的设计方法. 控制与决策, 2002, 17(2): 194-198)[8] Wu Y Q, Yu X H, Man Z H. Terminal sliding mode control design for uncertain dynamic systems. Systems and Control Letters, 1998, 34(5): 281-287[9] Zhuang Kai-Yu, Zhang Ke-Qin, Su Hong-Ye. Terminal sliding mode control for high-order nonlinear dynamic systems. Journal of Zhejiang University (Engineering Science), 2002, 36(5): 482-485(庄开宇, 张克勤, 苏宏业. 高阶非线性系统的Terminal滑模控制. 浙江大学学报 (工学版), 2002, 36(5): 482-485)[10] Tseng C S, Chen B S. Robust fuzzy observer-based fuzzy control design for nonlinear discrete-time systems with persistent bounded disturbances. IEEE Transactions on Fuzzy Systems, 2009, 17(3): 711-722[11] Foo G, Rahman M F. Sensorless sliding mode MTPA control of an IPM synchronous motor drive using a sliding mode observer and HF signal injection. IEEE Transactions on Industrial Electronics, 2010, 57(4): 1270-1278[12] Liu M, Shi P, Zhang L X, Zhao X D. Fault-tolerant control for nonlinear Markovian jump systems via proportional and derivative sliding mode observer technique. IEEE Transactions on Circuits and Systems, 2011, 58(11): 2755-2764[13] Li J, Yang J, Li S H, Chen X S. Design of neural network disturbance observer using RBFN for complex nonlinear systems. In: Proceedings of the 30th Chinese Control Conference. Yantai, China: IEEE, 2011, 6187-6192[14] Yang J, Chen W H, Li S. Non-linear disturbance observer based robust control for systems with mismatched disturbances/uncertainties. IET Control Theory and Applications, 2010, 5(18): 2053-2062[15] Pu Ming, Wu Qing-Xian, Jiang Chang-Sheng, Cheng Lu. Analysis and improvement of higher-order sliding mode differentiator. Control and Decision, 2011, 26(8): 1136-1140(蒲明, 吴庆宪, 姜长生, 程路. 高阶滑模微分器的分析与改进. 控制与决策, 2011, 26(8): 1136-1140)[16] Zhang Jun. Robust Adaptive Control for Nonlinear Uncertain Flight Moving Systems of Near Space Vehicle [Ph.D. dissertation], Nanjing University of Aeronautics and Astronautics, China, 2009(张军. 近空间飞行器非线性不确定飞行运动的鲁棒自适应控制 [博士学位论文], 南京航空航天大学, 中国, 2009)[17] Cao Bang-Wu, Jiang Chang-Sheng. Robust backstepping sliding mode controller design approach for a class of uncertain nonlinear systems. Journal of Astronautics, 2005, 26(6): 818-822(曹邦武, 姜长生. 一类不确定非线性系统的回馈递推滑模鲁棒控制器设计. 宇航学报, 2005, 26(6): 818-822)[18] Lin F J, Shen P H, Hsu S P. Adaptive backstepping sliding mode control for linear induction motor drive. Electric Power Applications, 2002, 149(3): 184-194
  • 加载中
计量
  • 文章访问数:  1835
  • HTML全文浏览量:  78
  • PDF下载量:  869
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-23
  • 修回日期:  2012-05-03
  • 刊出日期:  2012-11-20

目录

    /

    返回文章
    返回