2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Gabor多方向特征融合与分块直方图的人脸表情识别方法

刘帅师 田彦涛 万川

刘帅师, 田彦涛, 万川. 基于Gabor多方向特征融合与分块直方图的人脸表情识别方法. 自动化学报, 2011, 37(12): 1455-1463. doi: 10.3724/SP.J.1004.2011.01455
引用本文: 刘帅师, 田彦涛, 万川. 基于Gabor多方向特征融合与分块直方图的人脸表情识别方法. 自动化学报, 2011, 37(12): 1455-1463. doi: 10.3724/SP.J.1004.2011.01455
LIU Shuai-Shi, TIAN Yan-Tao, WAN Chuan. Facial Expression Recognition Method Based on Gabor Multi-orientationFeatures Fusion and Block Histogram. ACTA AUTOMATICA SINICA, 2011, 37(12): 1455-1463. doi: 10.3724/SP.J.1004.2011.01455
Citation: LIU Shuai-Shi, TIAN Yan-Tao, WAN Chuan. Facial Expression Recognition Method Based on Gabor Multi-orientationFeatures Fusion and Block Histogram. ACTA AUTOMATICA SINICA, 2011, 37(12): 1455-1463. doi: 10.3724/SP.J.1004.2011.01455

基于Gabor多方向特征融合与分块直方图的人脸表情识别方法

doi: 10.3724/SP.J.1004.2011.01455
详细信息
    通讯作者:

    田彦涛 吉林大学教授. 1993年于吉林工业大学获得工学博士学位. 主要研究方向为复杂系统建模, 优化与控制, 机器视觉与模式识别. E-mail: tianyt@jlu.edu.cn

Facial Expression Recognition Method Based on Gabor Multi-orientationFeatures Fusion and Block Histogram

  • 摘要: 针对传统的Gabor特征表征全局特征能力弱以及特征数据存在冗余性的缺点, 提出一种新颖的采用Gabor多方向特征融合与分块直方图统计相结合的方法来提取表情特征. 为了提取局部方向信息并降低特征维数, 首先采用Gabor滤波器提取人脸表情图像的多尺度和多方向特征, 然后按照两个融合规则将相同尺度不同方向的特征融合到一起. 为了能够有效地表征图像全局特征, 将融合图像进一步划分为若干矩形不重叠且大小相等的子块, 分别计算每个子块区域内融合特征的直方图分布, 将其联合起来实现图像表征. 实验结果表明, 这种方法无论在计算量上还是识别性能上都比传统的Gabor滤波器组更具有优势. 该方法的创新处在于提出了两个Gabor多方向特征融合规则, 应用在JAFFE表情库上最高平均识别率达到98.24%, 表明其适用于人脸表情图像的分析.
  • [1] Jin Hui, Gao Wen. Analysis and recognition of facial expression image sequences based on HMM. Acta Automatica Sinica, 2002, 28(4): 646-650(金辉, 高文. 基于HMM的面部表情图像序列的分析与识别. 自动化学报, 2002, 28(4): 646-650)[2] Liu Xiao-Min, Zhang Yu-Jin. Facial expression recognition based on Gabor histogram feature and MVBoost. Journal of Computer Research and Development, 2007, 44(7): 1089-1096(刘晓旻, 章毓晋. 基于Gabor直方图特征和MVBoost的人脸表情识别. 计算机研究与发展, 2007, 44(7): 1089-1096)[3] Liu Xiao-Min, Tan Hua-Chun, Zhang Yu-Jin. New research advances in facial expression recognition. Journal of Image and Graphics, 2006, 11(10): 1359-1368(刘晓旻, 谭华春, 章毓晋. 人脸表情识别研究的新进展. 中国图象图形学报, 2006, 11(10): 1359-1368)[4] Xue Yu-Li, Mao Xia, Guo Ye, Lv Shan-Wei. The research advance of facial expression recognition in human computer interaction. Journal of Image and Graphics, 2009, 14(5): 764-772(薛雨丽, 毛峡, 郭叶, 吕善伟. 人机交互中的人脸表情识别研究进展. 中国图象图形学报, 2009, 14(5): 764-772)[5] Wu Xiu-Yong, Xu Ke, Xu Jin-Wu. Automatic recognition method of surface defects based on Gabor wavelet and kernel locality preserving projections. Acta Automatica Sinica, 2010, 36(3): 438-441(吴秀永, 徐科, 徐金梧. 基于Gabor小波和核保局投影算法的表面缺陷自动识别方法. 自动化学报, 2010, 36(3): 438-441)[6] Ashraf A B, Lucey S, Chen T. Reinterpreting the application of Gabor filters as a manipulation of the margin in linear support vector machines. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(7): 1335-1341[7] Lee T S. Image representation using 2D Gabor wavelets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(10): 959-971[8] Donato G, Bartlett M S, Hager J C, Ekman P, Sejnowski T J. Classifying facial actions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(10): 947-989[9] Zhang Z Y, Lyons M, Schuster M, Akamatsu S. Comparison between geometry-based and Gabor-wavelets-based facial expression recognition using multi-layer perceptron. In: Proceedings of the 3rd IEEE International Conference on Automatic Face and Gesture Recognition. Nara, Japan: IEEE, 1998. 454-459[10] Wen Z, Huang T S. Capturing subtle facial motions in 3D face tracking. In: Proceedings of the 9th IEEE International Conference on Computer Vision. Nice, France: IEEE, 2003. 1343-1350[11] Yu J G, Bhanu B. Evolutionary feature synthesis for facial expression recognition. Pattern Recognition Letters, 2006, 27(1): 1289-1298[12] Liao S, Fan W, Chung A C S, Yeung D Y. Facial expression recognition using advanced local binary patterns, Tsallis entropies and global appearance features. In: Proceedings of the IEEE International Conference on Image Processing. Atlanta, USA: IEEE, 2006. 665-668[13] Deng Hong-Bo, Jin Lian-Wen. Facial expression recognition based on local Gabor filter bank and PCA + LDA. Journal of Image and Graphics, 2007, 12(2): 322-329(邓洪波, 金连文. 一种基于局部Gabor滤波器组及PCA + LDA的人脸表情识别方法. 中国图象图形学报, 2007, 12(2): 322-329)[14] Zhang B C, Shan S G, Chen X L, Gao W. Histogram of Gabor phase patterns (HGPP): a novel object representation approach for face recognition. IEEE Transactions on Image Processing, 2007, 16(1): 57-68[15] Yang Bo, Jing Zhong-Liang. Image fusion algorithm based on the quincunx-sampled discrete wavelet frame. Acta Automatica Sinica, 2010, 36(1): 12-22(杨波, 敬忠良. 梅花形采样离散小波框架图像融合算法. 自动化学报, 2010, 36(1): 12-22)[16] Gu Xin, Wang Hai-Tao, Wang Ling-Feng, Wang Ying, Chen Ru-Bing, Pan Chun-Hong. Fusing multiple features for object tracking based on uncertainty measurement. Acta Automatica Sinica, 2011, 37(5): 550-559(顾鑫, 王海涛, 汪凌峰, 王颖, 陈如冰, 潘春洪. 基于不确定性度量的多特征融合跟踪. 自动化学报, 2011, 37(5): 550-559)[17] Gao Quan-Xue, Xie De-Yan, Xu Hui, Li Yuan-Zheng, Gao Xi-Quan. Supervised feature extraction based on information fusion of local structure and diversity information. Acta Automatica Sinica, 2010, 36(8): 1107-1114(高全学, 谢德艳, 徐辉, 李远征, 高西全. 融合局部结构和差异信息的监督特征提取算法. 自动化学报, 2010, 36(8): 1107-1114)[18] Lei Z, Liao S, Pietikainen M, Li S Z. Face recognition by exploring information jointly in space, scale and orientation. IEEE Transactions on Image Processing, 2011, 20(1): 247-256[19] Shen Lin-Lin, Ji Zhen. Gabor wavelet selection and SVM classification for object recognition. Acta Automatica Sinica, 2009, 35(4): 350-355[20] Liu S S, Tian Y T, Wan C. Gabor feature representation method based on block statistics and its application to facial expression recognition. In: Proceedings of the 8th World Congress on Intelligent Control and Automation. Jinan, China: IEEE, 2010. 6267-6271[21] Gong Ting, Hu Tong-Sen, Tian Xian-Zhong. Human face expression recognition based on within-class modular PCA. Mechanical and Electrical Engineering Magazine, 2009, 26(7): 74-76(龚婷, 胡同森, 田贤忠. 基于类内分块PCA方法的人脸表情识别. 机电工程, 2009, 26(7): 74-76)[22] Jadhao D V, Holambe R S. Gabor wavelet feature based face recognition using the fractional power polynomial kernel Fisher discriminant model. In: Proceedings of the International Conference on Computational Intelligence and Multimedia Applications. Tamil Nadu, India: IEEE, 2007. 387-393[23] Kim S K, Park Y J, Toh K A, Lee S. SVM-based feature extraction for face recognition. Pattern Recognition, 2010, 43(8): 2871-2881
  • 加载中
计量
  • 文章访问数:  2324
  • HTML全文浏览量:  75
  • PDF下载量:  1814
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-28
  • 修回日期:  2011-07-07
  • 刊出日期:  2011-12-20

目录

    /

    返回文章
    返回