[1]
|
Meng Zu-Qiang, Cai Zi-Xing. Identification method of nonlinear systems based on parallel genetic algorithm. Control and Decision, 2003, 18(3): 367-370 (蒙祖强, 蔡自兴. 一种基于并行遗传算法的非线性系统辨识方法. 控制与决策, 2003, 18(3): 367-370)[2] Qiao Jun-Fei, Han Hong-Gui. Optimal structure design for RBFNN structure. Acta Automatica Sinica, 2010, 36(6): 865-872 (乔俊飞, 韩红桂. RBF神经网络的结构动态优化设计. 自动化学报, 2010, 36(6): 865-872)[3] Ye Jian, Ge Lin-Dong, Wu Yue-Xian. An application of improved RBF neural network in modulation recognition. Acta Automatica Sinica, 2007, 33(6): 652-654 (叶健, 葛临东, 吴月娴. 一种优化的RBF神经网络在调制识别中的应用. 自动化学报, 2007, 33(6): 652-654)[4] Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: theory and applications. Neurocomputing, 2006, 70(1-3): 489-501[5] Malathi V, Marimuthu N S, Baskar S. Intelligent approaches using support vector machine and extreme learning machine for transmission line protection. Neurocomputing, 2010, 73(10-12): 2160-2167[6] Minhas R, Baradarani A, Seifzadeh S, Wu Q M J. Human action recognition using extreme learning machine based on visual vocabularies. Neurocomputing, 2010, 73(10-12): 1906-1917[7] Tang X L, Han M. Partial Lanczos extreme learning machine for single output regression problems. Neurocomputing, 2009, 72(13-15): 3066-3076[8] Huang G B, Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing, 2008, 71(16-18): 3460-3468[9] Huang G B, Chen L, Siew C K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Network, 2006, 17(4): 879-892[10] Hansen P C. Rank-deficient and Discrete Ill--posed Problems: Numerical Aspects of Linear Inversion. Philadelphia: SIAM, 1998. 45-68[11] Kaban A. On Bayesian classification with Laplace priors. Pattern Recognition Letters, 2007, 28(10): 1271-1282[12] Krishnapuram B, Carin L, Figueiredo M A T, Hartemink A J. Sparse multinomial logistic regression: fast algorithms and generalization bounds. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6): 957-968
|