2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于稀疏嵌入分析的降维方法

闫德勤 刘胜蓝 李燕燕

闫德勤, 刘胜蓝, 李燕燕. 一种基于稀疏嵌入分析的降维方法. 自动化学报, 2011, 37(11): 1306-1312. doi: 10.3724/SP.J.1004.2011.01306
引用本文: 闫德勤, 刘胜蓝, 李燕燕. 一种基于稀疏嵌入分析的降维方法. 自动化学报, 2011, 37(11): 1306-1312. doi: 10.3724/SP.J.1004.2011.01306
YAN De-Qin, LIU Sheng-Lan, LI Yan-Yan. An Embedding Dimension Reduction Algorithm Based on Sparse Analysis. ACTA AUTOMATICA SINICA, 2011, 37(11): 1306-1312. doi: 10.3724/SP.J.1004.2011.01306
Citation: YAN De-Qin, LIU Sheng-Lan, LI Yan-Yan. An Embedding Dimension Reduction Algorithm Based on Sparse Analysis. ACTA AUTOMATICA SINICA, 2011, 37(11): 1306-1312. doi: 10.3724/SP.J.1004.2011.01306

一种基于稀疏嵌入分析的降维方法

doi: 10.3724/SP.J.1004.2011.01306
详细信息
    通讯作者:

    闫德勤 辽宁师范大学计算机与信息技术学院教授. 1999 年获南开大学博士学位. 主要研究方向为模式识别. E-mail: yandeqin@163.com

An Embedding Dimension Reduction Algorithm Based on Sparse Analysis

  • 摘要: 近几年局部流形学习算法研究得到了广泛的关注, 如局部线性嵌入以及局部切空间排列算法等.这些算法都是基于局部可线性化的假设而提出的, 但局部是否可线性化的问题没有得到很好有效的解决, 使得目前的降维算法对自然数据效果不佳. 自然数据中有很多是稀疏的,对稀疏数据的降维是局部线性嵌入算法所面临的一个问题. 基于对数据自然属性的考虑,利用数据的统计信息动态确定局部线性化范围, 依据数据的分布提出一种排列的稀疏局部线性嵌入算法(Sparse local linear embedding algorithm, SLLEA). 在数据集稀疏的情况下,该算法能够很好地把握数据的局部和整体信息. 将该算法应用于手工流形及图像检索等试验中,验证了该算法的有效性.
  • [1] Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500): 2323-2326[2] Zhang Z, Zha H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM Journal of Scientific Computing, 2004, 26(1): 313-338[3] Jolliffe I T. Principal Component Analysis. New York: Springer-Verlag, 1986[4] Wang J, Zhang Z Y, Zha H Y. Adaptive manifold learning. In: Proceedings of the Neural Information Processing Systems. Vancouver, Canada: The MIT Press, 2004. 1473-1480[5] Teh Y W, Roweis S. Automatic alignment of local representations. In: Proceedings of the Neural Information Processing Systems. Vancouver, Canada: The MIT Press, 2002. 841-848[6] Yang L. Alignment of overlapping locally scaled patches for multidimensional scaling and dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(3): 438-450[7] Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 2003, 15(6): 1373-1397[8] Donoho D L, Grimes C. Hessian eigenmaps: locally linear embedding, techniques for high-dimensional data. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(10): 5591-5596[9] He X F, Niyogi P. Locality preserving projections. In: Proceedings of the Neural Information Processing Systems. Vancouver, Canada: The MIT Press, 2003. 153-160[10] He X F, Cai Deng, Yan S C, Zhang H J. Neighborhood preserving embedding. In: Proceedings of the 10th IEEE International Conference on Computer Vision. Beijing, China: IEEE, 2005. 1208-1213[11] Kokiopoulou E, Saad Y. Orthogonal neighborhood preserving projections: a projection-based dimensionality reduction technique. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(12): 2143-2156[12] Li Le, Zhang Yu-Jin. Linear projection-based non-negative matrix factorization. Acta Automatica Sinica, 2010, 36(1): 23-39(李乐, 章毓晋. 基于线性投影结构的非负矩阵分解. 自动化学报, 2010, 36(1): 23-39)[13] Wen Ying, Shi Peng-Fei. An approach to face recognition based on common vector and 2DPCA. Acta Automatica Sinica, 2009, 35(2): 202-205(文颖, 施鹏飞. 一种基于共同向量结合2DPCA的人脸识别方法. 自动化学报, 2009, 35(2): 202-205)[14] Lin T, Zha H. Riemannian manifold learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(5): 796-809[15] Balasubramanian M, Schwartz E L. The isomap algorithm and topological stability. Science, 2002, 295(5552): 7[16] Silva J G, Marques J S, Lemos J. Selecting landmarks points for sparse manifold learning. In: Proceedings of the Neural Information Processing Systems. Vancouver, Canada: The MIT Press, 2006. 1241-1248[17] Zhang Run-Chu. Multivariate Statistical Analysis. Beijing: Science Press, 2006. 36-44(张润楚. 多元统计分析. 北京: 科学出版社, 2006. 36-44)[18] Cheng Yun-Peng, Zhang Kai-Yuan, Xu Zhong. Matrix Theory. Xi'an: Northwestern Polytechnical University Press, 2006. 124-129(程云鹏, 张凯院, 徐仲. 矩阵论. 西安: 西北工业大学出版社, 2006. 124-129)[19] Golub G H, Luk F, Overton M. A block Lanzcos method for computing the singular values and corresponding singular vectors of a matrix. ACM Transactions on Mathematical Software, 1981, 7(2): 149-169[20] Zhang Xian-Da. Matrix Analysis and Applications. Beijing: Tsinghua University Press, 2004(张贤达. 矩阵分析与应用. 北京: 清华大学出版社, 2004)
  • 加载中
计量
  • 文章访问数:  1486
  • HTML全文浏览量:  80
  • PDF下载量:  1291
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-20
  • 修回日期:  2011-04-13
  • 刊出日期:  2011-11-20

目录

    /

    返回文章
    返回